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1. Introduction

Two pairs (M, p) and (M’, p’) of germs of real (locally closed) submanifolds M, M’ C
CW at distinguished points p € M and p’ € M’ are said to be bilolomorphically
equivalent (or just equivalent for short) if there is a biholomorphic map H between
open neighborhoods of p and p’ in C¥ sending p to p’ and mapping a neighborhood of
p in M onto a neighborhood of p’ in M’. We write (M, p) ~ (M’, p') for equivalent
pairs and H : (CV, p) —» (CV, p’) for a map between open neighborhoods of p and
p' in CV sending p to p’.

It is easy to construct germs of smooth real curves in C that are not equivalent. In
contrast, any two germs of real-analytic curves in C at arbitrary distinguished points
are always equivalent, since any real-analytic diffeomorphism between them extends
10 a biholomorphism between some open neighborhoods in C.

The simplest example of non-equivalent real-analytic submanifolds of the same
dimension is given by (C, 0) and (R2, 0) both linearly embedded in C? in the standard
way. More generally, it is easy to see that two germs at 0O of real linear subspaces of
CN are equivalent if and only if they can be transformed into each other by a complex
linear automorphism of CV.

In this paper we give a local description of a real-analytic submanifold M < C¥ ata
“general” point (see Theorem 2.5 below). This description is based on various notions

“of nondegeneracy and is of interest in its own right. An important application is that
at a “general” point p € M, the germ (M, p) is equivalent to another germ (M’, p’) if
and only if (M, p) and (M’, p’) are “formally” equivalent (see Theorem 6.1 below.)
This result is the main theorem in [BRZ 2000]. (It should be noted that there exist
pairs (M, p) and (M’, p’) which are “formally” equivalent, but not biholomorphically
equivalent; see §4.1.) We also address here the case of real-algebraic submanifolds and
their algebraic equivalences, which was not studied in [BRZ 2000]. (See Theorem 9.1
below.)

We mention briefly that the study of biholomorphic equivalence of real submani-
folds in CV goes back to Poincaré [P 1907] and E. Cartan [Ca 1932a], [Ca 1932b).
and [Ca 1937). In their celebrated work Chemn and Moser [CM 1974] solved the
equivalence problem for germs of Levi nondegenerate real-analytic hypersurfaces in
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CV and showed in particular that in this context the notions of formal and biholomor-
phic equivalence coincide. We will mention more recent work related to Theorem 6.1
later in this article.

2. Structure decomposition results for points in general position

If M is a connected real-analytic submanifold of C¥, we say that a property holds for
p € M in general position if it holds for all p outside a proper real-analytic subvariety
of M. A number associated to M is said to be a biholomorphic invariant if it is
preserved by biholomorphic equivalences of germs of M at any point in M.

2.1. Generic and CR submanifolds. A smooth real submanifold M c C¥ is called
generic (or generating, in some translations) if T,M 4+ JT,M = T,,CN foralip e M,
where J: TCY — TCV denotes the standard complex structure of CV, and T,M
denotes the (real) tangent space of M at p. More generally, if the space T, M +J T, M
has constant dimension for ¢ near p, M is said to be CR at p (or p is a CR point of M).
If M is CR at every point, it is said to be a CR submanifold. (For CR manifolds, the
reader is referred e.g. to the books [J 1990], [Bo 1991], [Ch 1991}, [BER 1999a].)
If M is real-analytic, the set of all non CR points of M is a nowhere dense proper
real-analytic subvariety of M.

Examples 2.1. In C all nontrivial smooth submanifolds are generic. More generally,
the graph of any (smooth) map between open sets in C" x RN-" (0 <n < N)and
iRN-7 g generic. For N > 2, complex submanifolds of CV of positive cedimension
and their real submanifolds are never generic. The submanifold

M:={w= |Z|2} C Cz,
where (z, w) are taken as coordinates in C2, is generic and CR everywhere except at
the origin in C2.

The role of generic points is illustrated by the following property.

Proposition 2.1. If M C C¥ is a connected real-analytic submanifold, there exists
an integer 0 < ry < N such that for p € M in general position

(M, p) ~ (M) x (0},0), M x(0)cCN™" xC", Q.1
where My ¢ CN=" s a generic real-analytic submanifold through 0. The number r
with this property is unique and is a biholomorphic invariant.

Remark 2.2, The points p for which the conclusion of Proposition 2.1 holds are in
fact the CR points of M.
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The number r) is called the excess codimension of M (cf. [BRZ 2000}, §2). It
is equal to the maximal codimension of a complex submanifold of C" containing an
open subset of M. For p € M in general position, M is CR at p and there exists
a complex submanifold of CV of codimension r; that contains a neighborhood of P
in M. This complex submanifold is unique in the sense of germs and is called the
intrinsic complexification of M at p.

2.2. Finite and minimum degeneracy. Finite nondegeneracy is a higher order gener-
alization of Levi nondegeneracy. For a smooth CR submanifold M ¢ CV we denote
by T°M the real subbundle given by ToM ={X € )M : JX € TyM}. We consider
the (0. 1) vector fields on M, i.e., the sections of the subbundle

TOM = (X +iJX: X eTM)CT*MQC.

Then M is Levi nondegenerate at p if for any (0. 1) vector field L with L(p) # 0,
there exists a (0, 1) vector field L, such that

(L. Tp) ¢ T{M ®C.

This condition is equivalent to the nondegeneracy of the Levi form defined as the
(unique) hermitian form

Lp: T)'M x THM - (T,M/TsM)®C (22

satisfying

1 —
Lp(L1(p), L(p)) = ’2-i'77[Ll’ Li(p) (2.3)

for all (0, 1) vector fields L, Ly, where 1: TM @ C —» (TM/TM) ® C is the
canonical projection.

The more general concept of finite nondegeneracy can be defined in a similar way
as follows.

Definition 2.1. A smooth CR submanifold M C C¥ is called finitely nondegenerate
at p if there exists / > 0 such that for any (0, 1) vector field L on M with L(p) # 0,
there are (0, 1) vector fieldson M, Ly, ..., Ly, 0 < k </, such that

(L1, [l L]...X(p) ¢ TyM @ C. (2.4)

If / is minimal with this property, M is called /-nondegenerate at p.

Remark 2.3. It follows that M is 1-nondegenerate if and only if it is Levi-nondege-
nerate. Also M is O-nondegenerate if and only if it is totally real, i.e., ;M = (O}
To check Definition 2.1 it suffices to assume that L, Ly, ..., Ly in (2.4) are all taken
from a fixed local basis of (0, I) vector fields on M near p.
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The condition of finite nondegeneracy was given in [BHR 1996] for hypersurfaces
and can be found in [BER 1999a] for CR submanifolds of higher codimension. The
formulation given in Definition 2.1 is equivalent to that in the reference above (see § 3
or Proposition 1.24 in [E 2000]). In [BRZ 2000] this notion was extended to arbitrary
real-analytic submanifolds. As in the case of the Levi form, higher order tensors can
be used to give an alternative definition of finite nondegeneracy (see §3).

Example 2.4. Let M C C? beareal-analytic hypersurface through 0 given by Im w =
¢(z, Z, Re w) where ¢ is a real-valued real-analytic function defined near the origin
in C x R satisfying ¢(z, 0, 0) = 0. Then M is finitely nondegenerate at 0 if and only
if at least one of the partial derivatives ¢, = (0) (1 < k < 00) does not vanish. If k is
the smallest such integer, then M is k-nondegenerate at 0.

The role of finite nondegeneracy is illustrated by the following property.

Proposition 2.2. If M C CV is a real-analytic submanifold, then there exists an
integer 0 < ry < N such that for p € M in general position

(M, p) ~ (M2 x C™2,0), M, x {0} c C¥™" xC"™, (2.5

where My C CN="2 is a real-analytic CR submanifold finitely nondegenerate at 0.
The number ry with this property is unique and is a biholomorphic invariant.

The number r; is called the degeneracy of M. It is equal to the maximal dimension
of the leaves of a holomorphic foliation in a neighborhood of a point p € M such
that a neighborhood of p in M is saturated (i.c., is a union of leaves) (see {F 1977]).
The points p € M for which the conclusion of Proposition 2.2 holds are said to be of
minimum degeneracy in M (see [BRZ 2000], §2).

Example 2.5. The hypersurface M C C given by Im w = |z;2,|? in the coordinates
21, 22, w) is of minimum degeneracy 1 outside the plane H := {(0,0)} x R. For
p ¢ H,(M, p)isequivalent to (M| x C, 0) with M) := {(z, w) € C?:Imw = |z)?).

2.3, Finite type and CR orbits. A smooth CR submanifold M c CV is said to be
of finite type at p (in the sense of Kohn [K 1972} and Bloom—-Graham [BG 1977]) if
all (0, 1) vector fields on M and their conjugates, together with all their higher order
commutators span the space T,M ® C. For general CR submanifolds, the condition
of finite nondegeneracy and that of finite type are independent, i.e., one condition
does not necessarily imply the other. (See Examples 2.6 and 2.7.) However, for
hypersurfaces finite nondegeneracy at a point implies finite type at that point.

Example 2.6. The hypersurface M C C? given in Example 2.4 is of finite type at 0
if and only if at least one of the partial derivatives ¢.«z1(0), 1 < k,! < oo, does not
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vanish, Hence, for instance, the hypersurface given by
M={zw)eCxC:Imw=|z*}

is of finite type at 0, but is not finitely nondegenerate at 0.

Example 2.7. For any Hermitian form {,): C x C — C? the quadric
M: ={z.w)eCxC?:Imw = (z,2)}

is not of finite type at any point. If, in addition, the vector-valued Hermitian form
{z. z) does not vanish identically, then M is finitely nondegenerate at every point.

Proposition 2.3. If M C CV is a connected real-analytic submanifold, then there
exists an integer 0 < r3 < N such that for p € M in general position

(M, p) ~ (M3,0), M3 CN=" x R", (2.6)

with (0, u) € Mj foru € R" sufficiently small, and for such fixed u, M3n(CN "3 x {u}))
is a CR submanifold of finite type at (0, u). The number r3 with this property is unique
and is a biholomorphic invariant.

The number r3 is called the orbit codimension. The CR orbit of apoint p e M
is the germ at p of a (real-analytic) submanifold of M through p of smallest possible
dimension to which all the (0, 1) vector fields on M are tangent. The number rs is
equal to the minimal codimension of any CR orbit. It is also equal to the maximal
number r such that there exists a holomorphic submersion of a neighborhood of a
point p € M in CV onto C” sending M into the real part R". (See [BER 1996)
for the discussion in the algebraic case.) The points p for which the conclusion of
Proposition 2.2 holds are said to be of minimum orbit codimension (see [BRZ 2000],
§2). The germ of the submanifold M3 N (C™* x {u}) at (0, u) is the CR orbit of M3 at
this point.

In contrast to the situation of Proposition 2.2, in general the submanifold M3 cannot
be “flattened”, i.c., written as M} x R™, with M; c CV~"* a real-analytic submani-
fold. One obstruction to such a “flattening” is the possible nonequivalence of the CR
orbits M3N(CY "3 x {u}) for different u € R". In order to give an example of such a
submanifold that cannot be “flattened” at any point, we introduce some preliminaries.

Consider for any real number « the quadric M, C C® of codimension 2 defined
in the coordinates (z, w) € C* x C? by Im w = h,(z. z), where I, is the C*-valued
Hermitian form

Mz, x) = (21X + 23%3 + 24X4. 22X2 + 23X3 + UZ4X4)- Q.7
The following lemma will be used to construct our example,

Lemma 24. For any u,u’ € R withu,u’ > 1 the Hermitian forms h, and h,, are
equivalent if and only if u = u'. That is, if there exist a 2 x 2 invertible real matrix B
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and a 3 x 3 complex invertible matrix A such that
Bhy(z, x) = hu(Az, Ax) forallz, x € C, (2.8)

thenu =1u'.

Proof. Let {ey, ..., es} be the standard basis of C*. We claim first that if {vy, ..., v4}
is a basis of C? for which hy(vj,v) = 0, j # k, then there is a permutation o
of {1, 2, 3,4} and complex numbers A; # 0 such that v; = Ajes(jy, j = 1,...,4.
To prove the clalm, let ¢, be the positive definite (scalar) Hermitian form given by
®u(z, x) = hl(z. x) + h2(z, x), where h), h? are the components of k,. Then the
4x4 dlagonal matrix D with diagonal entries (l 0.1/2,1/(1 + u)) satisfies

¢u(Dz, x) =hl(z,x) forallz, x e C* (2.9)
Hence ¢,(Dvj, ») = 0, j # k, and since ¢, is positive definite, it follows that
Dvj = l;v;, forsomel; € C, j = 1,...,4. In particular, since D is diagonal and its

eigenvalues are distinct, any eigenvector of D is a nonzero multiple of one of the ¢;.
Since the v; are all eigenvectors of D, the claim is proved.
Assume that (2.8) holds. Since A,(e;, ex) = 0, j # k, we may apply the claim

to the vectors v; = Aej and conclude that Ae; = Ajeq(j), j = 1....,4. From
this and (2.8) applied to z = x = ej, we have Bh,s(ej. ¢;) = |A; 2 h,,(e.,(_,), e,,(J)),
Jj = .,4. Hence the real 2 x 2 invertible matrix B maps each vector in the

set S,,r = [(l, 0), (1, 1), (1, «’), (0, 1)} into a positive multiple of a vector in the set
Sy = {(1,0), (1, 1), (1, u), (0, 1)}. Since each of the vectors (1, 1) and (1, «’) is a
linear combination with positive coefficients of the vectors (1, 0) and (0, 1), the same
is true of their images under the linear map B. It follows that each of the vectors (1, 0)
and (0, 1) is mapped into a positive multiple of one of the same two vectors. Similar
reasoning shows that up to positive scalar multiples B sends the vectors in the set S,
into those of S, either by preserving the order of these vectors or reversing it. In either
case, a simple calculation shows that necessarily u = u’. O

Asa consequence of Lemma 2.4, it follows that for any u, u’ € R, «, ' > 1 and
p € M.,, p' € M, the germs (M,, p) and (M, p’) are equivalent if and only if
u = u’. Indeed since (M,,, p) ~ (M, 0) for any p € M, and any u € R, it suffices
to assume p = p’ = 0. If (M,, 0) and (M, 0) are (biholomorphically) equivalent,
their Levi forms A, and h,, are linearly equivalent, i.e., they must satisfy (2.8). Hence
# = u’ by the lemma. Moreover, for any # € R and any p € M,,, the reader can easily
check that M, is of finite type at p. We may now give an example of a manifold which
cannot be “flattened” at any point, as announced above.

Example 2.8. Let &, (z, z) be defined by (2.7). Consider the generic submanifold
M c C7 of codimension 3 given in the coordinates (z, w, u) € C* x C? x C by

Imu=0, Imw=h,(z,2).
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Then the CR orbits of M are M N (C® x {u}), u € R. By the observation preceding
this example, the CR orbits of M are pairwise nonequivalent for u > 1. Hence, for
any g = (p,u) € M, with p € M,,, u > 1, (M, g) is not equivalent to any product
(M’ x R, 0) with M’ C C® a CR submanifold of finite type. Indeed, the CR orbit of
(0, 4’y in M’ x Ris M’ x (u’) and hence such orbits are equivalent to each other for
different values of u’.

2.4. A structure result for points in general position. Putting Propositions 2.1, 2.2
and 2.3 together we obtain:

Theorem 2.5. Let M C CN be a connected real-analytic submanifold. Then there
exist integers 0 < ry,ra,r3 < N, such that for p € M in general position

(M, p) ~ (M xC? x{0),0), MxC?x(0}C(C"xR?)xC?xC", (2.10)

wherer .= N —ry —ry —r3, MCcC xR3isa finitely nondegenerate generic
submanifold of C*73 through O such that for u € R™ near 0, the point (0, u) is in M
and M N (C" x (u}) is a CR submanifold of finite type at (0, u).

2.5. The hypersurface case. Inthe case M C C¥ is a hypersurface, Theorem 2.5 can
be reformulated in a simpler form. First, M is generic in CV, so that r| = 0. Also, as
mentioned in §2.3, for N > 2, any hypersurface which is finitely nondegenerate at 0
is necessarily of finite type at 0, so that r3 = 0. Hence we have

Corollary 2.6. Let M C CN be a connected real-analytic hypersurface. Then exactly
one of the following alternatives holds.

(a) There exists an integer 0 < ry < N — 2 such that for all p € M in general
position, (M, p) ~ (M xC", 0), where McCN-"isq finitely nondegenerate
hypersurface (and hence of finite type) through 0.

(b) Forall p € M in general position, (M, p) ~ (R x CN-1,0).

3. Finite nondegeneracy and higher order tensors for CR
manifolds

Let M C C¥ be a smooth CR submanifold, and p € M. The following construction
generahzes the Levi form as given by (2.2). For s > 1, consider the linear subspace
F S C T "M of all possible values L(p) of a (0, 1) vector field L such that (2.4) fails
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to hold for all ¥ < s and all (0, 1) vector fields L, ..., Ly. We obtain a decreasing
sequence of subspaces

0,1 !
Ty M=F,D---DF,D .
Then there exists a unique multilinear map
L3 (TP M) x Fy > (T,M/TsM)®C
satisfying
LILYP). ... Ls(p), L(p)) = w[L1. ... [Ls, L. 1(p), @3.1)

for all (0, 1) vector fields L, Ly, ..., Ly with L(p) € F,i', where 7 is as in (2.3).
Indeed, it follows from the construction of the subspaces £, that the right-hand side
of (3.1) is multilinear in its arguments over the ring of smooth complex functions. The
tensor .Lj, is complex-linear in the s first arguments and antilinear in the last one. For
s = 1 we obtain a multiple of the Levi form; i.e., .C,',(Xl, X2) = 2iLp(Xy, X2).
The tensors analogous to .,Cj, were introduced by Ebenfelt [E 1998). For s = 2,
the definition of .£,2, is due to Webster [W 1995] (in the case M is a hypersurface),

where £,2, is called the cubic form. The subspaces F, and the tensors £}, are also
related to the submodules N, 1 < 5 < 00, of the C*®-module of all (0, 1) vector
fields defined by Freeman [F 1977] inductively as follows. Let N; be the module of
all (0, 1) vector fields on M. If N,_, is defined, let N; C N,_; be the C*®-submodule
consisting of all (0, 1) vector fields L such that (2.4) fails to hold for all £ < s, all
(0, 1) vector fields Ly, ..., Ly and all p € M. (Actually, Freeman’s submodules are
the conjugates of the N;’s defined here.) If all subspaces F; have constant dimension
for ¢ in a neighborhood of p, N; consists precisely of their sections. However, in
general, a subspace F, may be nontrivial even if Ny = 0. For instance, this happens
fors = 2if the Levi form £, is nondegenerate for p in general position but degenerate
at some point.

Example 3.1. The hypersurface M C C2 given by Im w = |z|* is finitely degenerate
on {0} x R and finitely nondegenerate outside this line. For p = 0 we have Fj =

T(;)" M for all s > 1. On the other hand, the submodules N, are all zero for s > 2 and
thus “don’t notice” the degeneracy.

We have the following characterization of k-nondegeneracy:

Proposition 3.1. If M C CV is a smooth CR submanifold and p € M, then the
Sfollowing are equivalent for k > 1:

(i) M is k-nondegenerate at p,

(ii) k is the smallest integer for which F, ,f”"' =0,
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(iii) F[’,‘ # {0} and for any X € F,’,‘. X # 0, there exist Xy,....X; € T,?“M with
LX), ... Xk X) #£0.

We now give an equivalent definition of finite nondegeneracy in terms of a defining
function of M. If M C C¥ is a smooth CR submanifold of codimensiond and p € M,
a (smooth) defining function for M near p is a real smooth map p = (p', ool )
of rank 4 defined in a neighborhood of p in C¥ such that M is locally defined near
p by p(Z,Z) = 0. We write p, = (pél, e p:’L.N) for the complex gradient of p/,
1 < j < d. We have the following.

Proposition 3.2. Let M C CV be a smooth CR submanifold and p a smooth defining
Sfunction of M near p € M. Then for an integer k > 0, the following are equivalent.

(i) M is k-nondegenerate at p.

(i) The integer k is minimal such that the collection of vectors (L| ..Lg pé)( P P)
span CcN forl < j <d,0 <5 <k, andall choices of (0, 1) vector fields
Ly,....,Lyon M.

As mentioned in Remark 2.3 above, k-nondegeneracy at p can be checked using
any local basis of (0, 1) vector fields on M. Also, one can directly check that condition
(ii) of Proposition 3.2 does not depend on the choice of the defining function p and
that in this condition, if suffices to take the vector fields L, ..., L, from a fixed local
basis of (0, 1) vector fields on M near p. To check the equivalence of (i) and (ii)
in the case of a generic submanifold, the reader can take “normal” coordinates as in
[BER 19992a] and do the calculation using the basis of vector fields given by (11.2.18)
in [BER 19992} and the defining function p given there. (A related calculation is
done in the reference cited here.)

4. Different notions of equivalences for real submanifolds

4.1. Formal equivalence. In practice, biholomorphic equivalence of two germs of
real submanifolds in C¥ can be hard to check. For instance, in the work of Chern—
Moser-[CM 1974] the so-called formal equivalence is established first and then the
convergence of the formal map is proved, yielding biholomorphic equivalence.

Definition 4.1. A formal equivalence between two germs, (M, p) and (M’, p’), of
real-analytic submanifolds in CV is an invertible formal power series map

HZ) =p'+ Y alZ-p)* aeC Z=(Zi....2y). (4D

lerj=1
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sending M into M’ in the “formal sense”, i.e., satisfying
P (H(Zx)). H(Z(x))) =0 “4.2)

for some real-analytic parametrization x — Z(x) of M near p = Z(0) and some
real-analytic defining function p’(Z, Z) of M’ near p'.

Equality in (4.2) is understood in the sense of formal power series in x. The
formal map H given by (4.1) is invertible if the vectors {0 H/3Z;(p), 1 < j < N}are
linearly independent in CV. It is not hard to see that if (4.2) holds for some choice of
parametrization Z(x) of M and defining function p’ of M’, then it holds for any other
choice. We shall say that the germs (M, p) and (M’, p’) are formally equivalent if
there exists a formal equivalence between them. Formal equivalence of (M, p) and
(M’, p’) translates into the existence of solutions for an infinite system of polynomial
equations which the coefficients of H must satisfy. Formal equivalence is often easier
to check than biholomorphic equivalence. One of the main results in [BRZ 2000]
(see Theorem 6.1 below) states that for points in general position these two notions of
equivalence coincide. Moreover, it is shown that any given formal equivalence can be
“corrected” to a convergent one without changing terms of a prescribed finite order.

The assumption that the point p be in general position cannot be dropped. Indeed,
in C2 there exist a pair of germs of formally, but not biholomorphically, equivalent
2-dimensional real-analytic (non CR) submanifolds. Moser and Webster proved in
[MW 1983], Proposition 6.1, that no neighborhood of 0 in the 2-dimensional (non
CR) submanifold M c C? given by

w = z* + yz“:2 + yz32

can be biholomorphically transformed into the hyperplane C x R for y > 1/2. On
the other hand, they show that M is formally equivalent to a 2-dimensional real-
analytic submanifold contained in C x R provided y is not exceptional, i.e., if
(1/m)arccos(1/2y) is not a rational number. The authors of the present paper are
not aware of any example of pairs of germs of real-analytic CR submanifolds that are
formally but not biholomorphically equivalent.

4.2. CR equivalence and k-equivalence. A CR function on a smooth CR submani-
fold M c C¥ is a smooth (C*) complex-valued function defined on M satisfying
the Cauchy-Riemann equations restricted to M. More precisely, f is CR on M if
Lf = 0 for every (0, 1) vector field L on M. If M and M’ are germs of smooth CR
submanifolds of CV at p and p’ respectively, we say that (M, p) is CR equivalent to
(M’, p') if there is a CR diffeomorphism (a diffeomorphism whose components are
CR functions) between open neighborhoods of p in M and of p’ in M’ respectively
and taking p to p’. Such a diffeomorphism is called a CR equivalence.

Itisknown thatif f is a CR function defined in a neighborhood of p in M, then there
is a formal (holomorphic) power series 3, co(Z — p)*, Z = (Z),...,2ZN),ca € C,
whose restriction to M coincides with the Taylor series of f at p. Moreover, if M is
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generic, then such a formal power series is unique. (See e.g. [BER 1999a], Propo-
sition 1.7.14 for the generic case.) It follows that if & is a CR equivalence between
two real-analytic germs (M, p) and (M’, p’) of CR submanifolds of C¥, then the
corresponding vector-valued formal power series H of the form (4.1) (obtained from
the components of & by the Taylor series property of CR functions mentioned above)
satisfies (4.2) and can be assumed to be invertible; hence H is a formal equivalence
between (M, p) and (M’, p). On the other hand, the restriction to M of a biholo-
morphic equivalence between (M, p) and (M’, p’) is obviously a CR equivalence.
Thus the notion of CR equivalence lies between that of formal and biholomorphic
equivalence:

biholomorphic equivalence = CR equivalence = formal equivalence.

A weaker notion than that of formal equivalence is that of k-equivalence for an
integerk > 1.

Definition 4.2. For an integer k > 1 we say that two germs, (M, p) and (M’, p’),
of real-analytic submanifolds of C¥ are k-equivalent if there exists a biholomorphic
map H between neighborhoods of p and p’ in C¥, with H(p) = p’, such that

p'(H(Z(x)). HZ(x)) = O(Ix*)

for some real-analytic parametriz_ation x = Z(x) of M near p = Z(0) and some real-
analytic defining function p’(Z, Z) of M’ near p’. Such an H is called a k-equivalence
between (M, p) and (M’, p).

Again here the definition of k-equivalence is independent of the choice of the
parametrization Z(x) of M and of the choice of the defining function p’ of M’. We
also note that if H is a k-equivalence (or a formal equivalence), by taking its Taylor
polynomial of order £ — 1, we can find another k-equivalence whose components are
polynomials. Hence in Definition 4.2 we could have assumed that ¥ is a biholomor-
phism with polynomial components. Similarly, we could have also assumed that H
is just a formal invertible mapping, rather than a biholomorphism. Then any formal
equivalence may be considered as a k-equivalence for every k.

Example 4.1. Ifk > Oisaninteger, thenthe identity map is a 2k-equivalence between
the germs at 0 of the real hyperplane M := C xR  C? and the hypersurface M’ given
by Im w = |z|*. However, it is easily checked that there is no formal equivalence
between (M, 0) and (M’, 0).

The example shows that even very different looking germs of submanifolds can
be k-equivalent for some fixed k& without being formally equivalent. The situation
becomes rather different if we require (M, p) and (M’, p’) to be k-equivalent for
every k. This means the existence of a sequence of biholomorphic maps H; each
sending (M, p) into (M’, p’) up to order £, as in Definition 4.2. In particular, as noted
above, formal equivalence implies the existence of such a sequence. On the other
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hand, given a sequence of k-equivalences, in general, one cannot put them together
to obtain a formal equivalence. Nevertheless, for points in general position, the main
result in [BRZ 2000] states that the existence of such a sequence implies that (M, p)
and (M’, p') are formally and even biholomorphically equivalent. The authors of the
present paper are not aware of any example of pairs of germs (M, p) and (M’, p’)
of real analytic submanifolds in CV which are k-equivalent for every & > 1, but not
formally equivalent.

5. Structure decompositions and k-equivalences

In this section we consider the extent to which the decompositions given by Proposi-
tions 2.1, 2.2 and 2.3 (and summarized in Theorem 2.5) are invariant under different
notions of equivalences.

We first consider invariance under biholomorphic equivalences. We already re-
marked that the numbers r|, r2, r3 introduced in §2 are biholomorphic invariants.
Write r := N — r| — rp — r3 for brevity. Now assume that we have two germs at 0of
real-analytic submanifolds in CV of the form M x C" x {0} and M’ x C" x {0} with
M. M’ C C" xR™ asin Theorem 2.5. That is, both M and M’ are finitely nondegener-
ate generic submanifolds through 0 containing all points of the form (0, «) foru € R"
near 0, and such that M N (C" x {u})) and M'n (CC’ x (u)) are of finite type for u small.
We fix local holomorphic coordinates Z = (29, Z3, 22, Z') e C" x C"? x C"2 x C"!
near 0 and similarly we write H = (H°, H3, Hz, H") for the components of a CV-
valued map H.

Proposition 5.1. Ler H: (C¥,0) — (C¥,0) be a biholomorphic equivalence be-
tween the germs at 0 of M x C" x {0} and M’ x C"? x (0}). Then we have:

(i) HY(Z°, Z3,22,0) =0, i.e., H sends C" x C" x C™ x {0} into itself;

(ii) W(ZO z3,2%,0) = a—zr(Z“ Z3,272,0) = 0, i.e., H preserves the affine
subspaces given by

Z' =0, (2° 2Z% =const;
(iii) ‘?,—’Z’é(Z“. Z3,22,0) =0, i.e., H also preserves the affine subspaces given by
Z'=0, 2z*=const.

In particular, the restriction of (H OLH 3y 10 C" x C" x {0} x {0) is a biholomorphic
equivalence between (M, 0) and (M', 0).

Remark 5.1. Proposition 5.1 can be reformulated “geometrically” as follows. A bi-
holomorphic equivalence between real-analytic submanifolds preserves their intrinsic
complexifications, maximal tangent holomorphic foliations and CR orbits.
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A statement similar to Proposition 5.1 also holds for formal equivalences. How-
ever, both statements for formal and biholomorphic equivalences are in fact special
cases of more general invariance properties under k-equivalences. In the following
proposition, as was illustrated by Example 4.1, it is crucial to require the existence of
a k-equivalence for every k.

Proposition 5.2 ((BRZ 2000), Proposition 4.1). Suppose that (M, p) and (M’, p’)
are k-equivalent for all k > 1. Then the numbers ry, ry, r3 in Theorem 2.5 for M
coincide with the ones for M’.

Proposition 5.3 ((BRZ 2000), Lemma 4.4, Lemma 5.3). Under the assumptions of
Proposition 5.1 suppose that M is I-nondegenerate and let H be a k-equivalence
between M x C™ x {0} and M’ x C™ x {0}). Then we have:

() HY (2% 23, Z2,0) = 0(|1Z|%);

(i) m(zo Z3,22,0) = 0(Z)FY, ﬁ;(z" z3,22,0) = 0(1ZP* Yy pro-
vided k > 1;

In particular, the restriction of (H 0 H3) 10 C" x C™ x {0) x {0} is a k-equivalence
benwveen (M, 0) and (M, 0).

6. Comparison of different notions of equivalences

The following, which is one of the main results of [BRZ 2000], states that the four
notions of equwalence discussed above actually coincide at all points in general posi-
tion.

Theorem 6.1 ({IBRZ 2000], Corollary 14.1). LetM C CN beaconnected real-analy-
tic submanifold. Then for any p € M in general position and any germ (M', p") of a
real-analytic submanifold in CN, the following conditions are equivalent:

(1) (M. p)and (M’, p’) are k-equivalent for all k > 1;
(il) (M, p) and (M', p') are formally equivalent;
(iii) (M. p) and (M’, p’) are CR equivalent;
(iv) (M, p) and (M’, p') are biholomorphically equivalent.

As mentioned in §4, the implications (iv) = (iii) = (ii) == (i) hold
trivially. It was shown in [BER 1999b] that if M and M’ are real-analytic generic
submanifolds which are finitely nondegenerate and of finite type at p and p’ respec-
tively, then any formal equivalence H between (M, p) and (M’, p’) is necessarily
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convergent. In particular, one obtains the equivalence of conditions (ii), (iii) and (iv)
for M a connected real-analytic generic submanifold which is finitely nondegenerate
and of finite type at some point (and hence at all points in general position).

In the case that M is a real-analytic hypersurface, one can use the result in
[BER 1999b] mentioned above together with Proposition 5.3 to prove the equiva-
lence of (ii), (iii), and (iv) of Theorem 6.1 as follows. We begin with the structure
theory, Corollary 2.6, for hypersurfaces at points in general position. Since the fact
that (it) <= (iii) <= (iv) in case (b) of Corollary 2.6 can be easily proved, we
may assume that condition (a) of that corollary holds Hence we may assume that
M, p) = (M x C, 0) and that (M, p’) = (M’ x C™,0), where M and M’ are
finitely nondegenerate hypersurfaces and hence of finite type at 0, Let H be a formal
equivalence between (M, p) and (M’, p’). By Proposition 5.3 (here ry = r3 =0,
r = N—ry,and H = (H%, H?)), we conclude that the restriction H of HO to C" x {0}
is a formal equivalence between (M 0) and (M ’,0). Since M and M’ are finitely non-
degenerate and of finite type at 0, it follows from the result in [BER l999b] mentioned
above that A must be already convergent. Itis then easy to extend Hwoa holomorphic
equivalence between (M x C2, 0) and (M " x €, 0). In fact, one may choose such
a biholomorphic equivalence in such a way that its Taylor series coincides with that
of H up to any preassigned order.

For submanifolds of higher codimension it is not possible to reduce to the results of
[BER 1999b], even to prove that the notions of formal and biholomorphic equivalence
coincide, since the submanifold M given in Theorem 2.5 need not be equivalent to a
product of a CR manifold of finite type and R for some m. Indeed, if M is the finitely
nondegenerate generic submanifold of codimension 3 in C7 givenin Example 2.8, then
M = M, but M is not equivalent to such a product.

We now present some of the ideas involved in the proof of (ii) = (iv) in
Theorem 6.1, as given in [BRZ 2000], for a general real-analytic submanifold M. By
makmg use of Theorem 2.5 and Proposition 5.1, we first reduce to the case where
p=p =0,M= M and M’ = M’, with M and M’ as in Theorem 2.5. (That is, we
assume r; = r, = 0 in Theorem 2.5.)

The next step is to obtain a parametrization of all formal equivalences H between
(M, 0) and (M’, 0) by their (formal) jets along the linear subspace C := {0} x C" C
CN="3 x €', which is transversal to the CR orbits of M. In the coordinates (Z°, u) €
CN-"3 x C'* the required parametrization has the form

H(Z®, uy = T((8*H (O, 0)) 4 - Z° ), (6.1)

where & is a number depending only on the dimension N, I' is a C" -valued holomor-
phic map defined in some neighborhood of j* H (0) x {0} in the space JX(CV, CV) x
Cn, with j*H(0) = (8% H O, O))lalsk and J¥(C¥, CV) denoting the space of k-jets
at 0 of holomorphic maps from C¥ to C¥. Here it is important to note that T" does
not depend on the formal mapping H. Equality in (6.1) is in the sense of formal
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power series in Z9 and u. The identity (6.1) is a simplified version of the statement
of Theorem 10.1 in [BRZ 2000].

The third step is to use (6.1) to obtain a system of holomorphic equations which
must be satisfied by the formal series components of (8"‘ H(O, u)) ol<k" To this sys-
tem we apply Artin’s approximation theorem [A 1968] to conclude that there exists
a convergent solution for this system of equations. This yields the existence of a
holomorphic map H: vV, 0) — (C¥,0), which is the desired biholomorphic
equivalence between (M, 0) and (M’, 0). In fact, we can even choose H insuch a
way that its Taylor series coincides with that of H up to a preassigned order.

7. General conditions for the convergence of formal equivalences

We shall give here a result about convergence of formal equivalences between two
germs (M, p) and (M’, p’) for p and p’ in general position, more general than that
given in [BER 1999b] mentioned above. We restrict ourselves to the case where M
and M’ are generic submanifolds of CV,ie.,r =0. By making use of Theorem 2.5
we may assume that (M, p) = (M xC"?, 0) such that M - CN-"3isasinTheorem 2, 2.5
(but with r; = 0). Similarly we assume (M’, p’) = (M’ x €7, 0), with again M
as in Theorem 2.5, with the same integers r» and r3. We shall assume (M, p) and
M’, p’) have this form for the remainder of this section.

Theorem 7.1 ([BRZ 2000), Corollary 10.3). Ler (M, p) and (M’, p’) be as above.
Then there exists an integer k > 0 such that a formal equivalence H between M, p)
and (M’, p') is convergent if and only if, for

Z=(2°232)eCVN " xC* xC?, H=(H" H? H?Y,

both of the following conditions are satisfied.

(i) All partial derivatives T‘(’;)%’l(o Z3,0) are convergent for |a| < «;

(1) H2(Z) is convergent.
g

In fact, x can be chosen to be 2(d + )i, where d is the codimension of M inCN-n
and l is chosen such that M is |-nondegenerate.

In the case where ry = 0, the proof of Theorem 7.1 follows immediately from the
parametrization of all formal mappings given by (6.1), since in that case condition (i)
of the theorem implies that the right hand side of (6.1) is convergent and hence so is
the left hand side, H(Z). For the general case where r; need not be 0, one also needs
to use Proposition 5.3.
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8. Real-algebraic submanifolds

A submanifold M C C¥ is real-algebraic if it is contained in a real- algebralc subvari-
ety of the same dimension. The basic example is given by the sphere Z j=112j | = 1.
Most examples of real submanifolds included in this article are real-algebraic. The
study of local biholomorphic maps sending pieces of spheres into each other goes
back to Poincaré [P 1907] and Tanaka [T 1962]. Webster proved in [W 1977] that
local biholomorphic maps sending open pieces of Levi-nondegenerate real-algebraic
hypersurfaces into each other are complex-algebraic, i.e., their graphs are contained
in complex-algebraic subvarieties of the same dimension. The algebraic properties
of holomorphic maps sending one real-algebraic submanifold into another reveal the
optimal nondegeneracy conditions for points in general position and have been inten-
sively studied (see [S 1991], [H 1994), [BR 1995], [S 1995], [Z 1995], [BER 1996],
[SS 1996], [Mi 1998], [CMS 1999], [Z 1999)).

If M is a connected real-algebraic submanifold of CV, we say that a property
holds for points in general algebraic position if it holds for all p € M outside a
proper real-algebraic subvariety of M. Also, a stronger notion of equivalence, that
of algebraic equivalence, can be nawrally considered. Two germs of real-analytic
submanifolds of CV, (M, p) and (M, p'), are said to be algebraically equivalent if
there exists a biholomorphic equivalence between them which is complex-algebraic.
Then the analogues of Propositions 2.1, 2.2, 2.3 and hence of Theorem 2.5 also hold
in the category of real-algebraic submanifolds and algebraic equivalences for points
in general algebraic position. The proof is based on the algebraic version of the im-
plicit function theorem and other elementary properties (see e.g. [BER 1999a], §5.4).
In particular, the algebraic analogue of Proposition 2.1 follows from [BER 1999a],
Proposition 5.4.3 (d). The algebraic analogue of Proposition 2.2 can be obtained by
repeating the proof of Proposition 3.1 in [BRZ 2000]. In contrast to this, the argu-
ment of the proof of Proposition 3.3 in [BRZ 2000] cannot be directly adapted to the
algebraic case since the algebraic version of the Frobenius theorem does not hold. The
algebraic analogue of Proposition 2.3 was shown in [BER 1996] (Lemma 3.4.1) by
using the Segre sets rather than the Frobenius theorem. In particular, the CR orbits of
real-algebraic CR submanifolds are algebraic ((BER 1996], Corollary 2.2.5), whereas
the orbits of single vector fields in 7 M (the real parts of (0, 1) vector fields) need not
be algebraic.

Example 8.1. Consider the real-algebraic hypersurface M  C? given in real coor-
dinates by y = xay; where (z1,22) = (x| + iy, x2 + iy2). The sections of the
complex tangent subbundle T7¢M are spanned at each point by the vector fields

0 2 0 0 0 d
X=xv—+——-yy—, Y=JXi=x2— 4+ — +y1—.
2 axz + axy 'ay, ! “a Y2 + ay “ax.

The integral curve C for X through pp = (Jrl , xz, yl y2 9y € M is given by

" -
xp=x9eM N,y = )‘:é't' oym=H.
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Hence C is not algebraic if x ) £ 0or y # 0. (In contrast the orbits of Y are all
algebraic.) However, the CR orbnof any point po = (xl , ,\:2 y, , yo) eM wnhx2 #0
is (M, po), while when ‘fz = 0 (and hence y-, = 0) the CR orbit is (C x {0}, po).
Thus the algebraicity of these CR orbits cannot be proved by showing the algebraicity
of the integral curves of the basis of sections of T°M given by X. Y.

9. Algebraic equivalence for real-algebraic submanifolds

The following strengthens Theorem 6.1 in the case of real-algebraic submanifolds.

Theorem 9.1. Let M C C¥ be a connected real-algebraic submanifold. Then for any
P € M in general algebraic position and any germ (M’, p') of a real-algebraic sub-
manifold in CN, the equivalent conditions (iy~(iv) of Theorem 6.1 are also equivalent
to

(v) (M, p) and (M’, p") are algebraically equivalent.

The proof of Theorem 9.1 can be obtained by adapting the proof of Theorem 6.1
given in [BRZ 2000] to the algebraic case. It is sufficient to prove that (iv) implies
(v). As in the proof of Theorem 6.1 the first step is to reduce the generdl situation by
a complex-algebraic change of coordinates to the case where p = p' =0, M = M
and M’ = M’ with M and M’ as in Theorem 2.5, or rather its real-algebraic analogue
mentioned above. Here again, r; = rp = 0. The second step is to obtain an algebraic
parametrization of all biholomorphic equivalences H between (M, 0) and (M’. 0) by
their jets along the linear subspace C = (0} x C3. This parametrization takes the form
(6.1) with T" a map which is not only holomorphic but also complex-algebraic, defined
in some neighborhood of j* H(0) x {0} in the jet space JX(C¥.CN) x C". Note
that in this case the right hand side of (6.1) is a convergent power series in (Zy, u).
If u = (3*H(0,10)),, < is complex algebraic, then the algebraicity of H follows
immediately from the analogue of (6.1). Hence in the special case when M is of finite
type, i.e.,r3 = 0, H is parametrized by the single jet j* H(0) = (3° H (O))|a|<k so that
the biholomorphic equivalence H is algebraic itself. If r3 > 0, the jet (3% H (0, "))lul<L

and hence H need not be algebraic. Then we have to modify (H“H (0, u)) <« o
obtain an algebraic equivalence. This is done by using an algebraic version o Amn s
approximation theorem [A 1969]. Here again we can choose the Taylor series of the
algebraic equivalence to coincide with that of H up to a preassigned order.

Example 9.1. Let Mo C CV~! be an arbitrary finitely nondegenerate real-algebraic
submanifold through 0 and set M = M’ := My x R C CV. Then both M and M’
are finitely nondegenerate of infinite type and any biholomorphic map H(z, w) :=
(2, p(w)) with ¢: (C,0) — (C, 0) sending R into itself is a biholomorphic equiv-
alence between (M, 0) and (M’, 0). It is clear that if ¢ is not algebraic, then H is
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not algebraic. On the other hand, the identity mapping is an algebraic equivalence
between (M, 0), and (M’, 0), and there are many others.
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