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1 Introduction

In this paper, we show that a germ at 0 of a holomorphic mapping H: (CV,0) —
(CY’,0) sending one real-analytic generic submanifold M C CV of finite type at 0 into
another real-analytic generic submanifold M’ ¢ CN " is determined by its projection
onto Xj, the Segre variety of M’ at 0 (Theorem 1.1). We also give a necessary and
sufficient condition for a germ at 0 of a holomorphic mapping F: (CV,0) — (£§,0) to
be the projection of such a mapping H (Theorem 1.6). As a corollary, we obtain a
criterion for two real-analytic generic submanifolds M, M’ of finite type at 0 € C¥ to
be locally biholomorphically equivalent at 0 (Corollary 1.7). The main tools used in
the proofs arc the iterated Segre mappings, as previously introduced by the authors
in refs. [1,2], and also a new invariant description of normal coordinates (Theorem
2.1), which may be of independent interest. Segre variety techniques in the context of
mappings between real hypersurfaces were introduced in refs. (3, 4].

Let M be a real-analytic generic submanifold of codimension d in CV with 0 € M,
given locally near 0 by
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pl(ZsZ)="'=pd(Z’Z)=0’ (1'1)
where p(Z,¢) := (p1(Z,¢), - -, pa(Z,()) is a C?-valued holomorphic function such that
Ozp1 A+ ABzpg # 0 near 0 and

p(Z,¢) = p(C, 2). (1.2)

The generic submanifold M is said to be of finite type at p (in the sense of Kohn!®

and Bloom-Graham!®!) if the (complex) Lic algebra gas generated by all smooth (1,0)

and (0,1) vector ficlds tangent to M satisfies gas(p) = CT,M, where CT,M is the
complexified tangent space to M at p.

Let U C C¥ be a sufficiently small open neighborhood of 0. For p € CV sufficiently
close to 0, we denote by X,, the Segre variety of M at p defined by

Lp:={Z e U:p(Z,p)=0}. (1.3)

We observe, for future reference, that £, is an n-dimensional complex submanifold of
U, with n = N —d, for all such p. Moreover, it follows from (1.2) that p € £, if and
only p is in M, and also that q € X, if and only if p € Z,.

Theorem 1.1. Let M be a real-analytic generic submanifold of codimension d in
CV and of finite type at 0 € M. Then, for every A € C, 0 < || < 1, there exist 2d + 1
germs at 0 of holomorphic functions g7, ..., g3, A}, ..., k), :(C¥,0) — CV, depending
holomorphically on A, such that g}(0) — 0, A3(0) — 0 as A — 0 and such that the
following holds. If M’ ¢ CV' is a real-analytic generic submanifold of codimension d’
through 0 and Z a germ at 0 of a holomorphic submersion z: (CV’,0) — (X5, 0), where
3 is the Segre variety of M’ at 0, such that Z-(0) is transversal to f, then there
exists a germ at 0 of a holomorphic mapping ®: ((£5)2(¢*+1),0) — (CN',0) satisfying
the following. If H: (CV,0) — (CV ’,0) is a germ at 0 of a holomorphic mapping such
that H(M) C M’, then

H=>®0(ZoHoh},Zo Hogf‘,...,ZoHohﬁ,%’oHog,}\,'z"oHohﬁH,EoH), (1.4)
for all A sufficiently small.

Remark 1.2. It follows from the proof of Theorem 1.1 that there exists an integer
! > 0 such that each of the functions g},...,g}, h},..., A}, is given by a convergent
power scries of the form

Z(l
aN)+ Y Ga(N)37ar (1.5)
«€Z¥\ ({0}
where the coefficients ag(A), aa(A) are holomorphic in the unit disk I, ag(0) = 0. An-
other way of expressing this is saying that cach of the functions g3,...,g3, h,..., A},
is given by
A . Z A - (Z
gj(z)=gj ﬁs’\ ' hj(z)=hj ﬁ)’\ s (16)
where the 8y, ..., §a, R, .. ., b1 are germs at 0 of holomorphic functions (CN xC, 0) —

(CN,0).
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Remark 1.3.  Suppose that P: (CV',0) — (£5,0) is a germ at 0 of a holomorphic
projection, i.e. P|g; is the identity on 3§. The reader can casily verify that Z:=Pis
a holomorphic submersion satisfying the assumptions of Theorem 1.1. Conversely, any
holomorphic submersion Z as in Theorem 1.1 is a projection up to a local biholomor-
phism of £ at 0.

An immediate corollary of Theorem 1.1 is the following.

Corollary 1.4. Let M, M’, and % be as in Theorem 1.1. If H: (CV,0) — (cV',0)
is a germ at 0 of a holomorphic mapping such that H(M) C M’, then H is uniquely
determined by Zo H.

An algebraic reformulation of Corollary 1.4 can be given as follows. For any complex
manifold X and p € X, let Ox(p) denote the ring of germs at p of holomorphic
functions on X. For X = CV, we write On(p) instead of Ocwn(p). Recall that if
Y C X is a complex analytic subvariety through p, then the ring Oy (p) of germs at
p of holomorphic functions on Y is given by Ox(p)/I1(Y), where I(Y) denotes the
ideal of germs vanishing on Y. Let H be a germ at p of a holomorphic mapping
(X,p) = (W,q), where X and W are complex manifolds. The mapping H induces a
ring homomorphism ®5: Ow(g) — Ox(p), given by ®4(f) = fo H for f € Ow(q).
The reader can verify that the following result is a reformulation of Corollary 1.4.

Theorem 1.5. Let M, M’, and £j be as in Theorem 1.1 and denote by 7 the
canonical homomorphism 7: On:(0) — Og; (0). Let ¢: Oxy (0) — On-(0) be any ring
homomorphism such that 7 o ¢: Oy (0) — Og;(0) is an isomorphism. Then, for any
H:(CY,0) — (C¥',0) a germ at 0 of a holomorphic mapping such that H(M) C M’,
the induced homomorphism P4 is uniquely determined by ® o ¢.

We give now a necessary and sufficient condition for a germ at 0 of a holomorphic
mapping F:(CV,0) — (£5,0) to be of the form Z o H, for some % as in Theorem 1.1
and a holomorphic mapping H sending M into M’.

Theorem 1.6. Let M and d be as in Theorem 1.1. Then there exists an open,
connected subset € CV x C2d+1D(N-d)=N gych that the set

{(Z’ 5) € CN X C2(d+l)(N-—d)—N: (Z, f) € Q, 7 = 0}’

is open in {0} x CHHINN-d)=N with 0 in its closure, and 2d + 1 germs at 0 of holo-
morphic mappings

Ay,..., A4, By,..., Bar: (2,0) = C¥

such that A;(0,§) — 0, B;j(0,£) — 0 as £ — 0 (for (0,£) € ) and such that the
following holds. If M’, d’, &} arc as in Theorem 1.1, then there exists a germ at 0
of a holomorphic mapping ¥: ((£5)%4*V,0) — (C¥,0) satisfying the following. Let
F: (CV,0) — (Z4,0) be a germ at 0 of a holomorphic mapping. If there exists a germ
at 0 of a holomorphic mapping H: (CV,0) — (C"’,0) and a germ at 0 of a holomorphic
submersion z: (C¥',0) — (X}, 0) with Z-1(0) transversal to £j such that

HM)CM', F=30H (1.7)
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then
U FoBi(2,6),Fo 4r(2,6), .., Fo Ba(Z,5),
FoAu(Z,£),FoBy1(Z,€),F(2)) =0. (1.8)

Conversely, suppose (1.8) holds. Then for every germ at 0 of a holomorphic submersion
7 (CM',0) — (Th,0) with z71(0) transversal to Zj, there is a unique germ at 0 of a
holomorphic mapping H: (CV,0) — (C¥',0) satisfying (1.7).

By combining Theorem 1.6 with Theorem 3.1 in ref. (7], we obtain the following
result concerning the biholomorphic equivalence problem.

Corollary 1.7. Let M and d be as in Theorem 1.1. Then there exist an open set
Q2and Ay,...,Aq4, By,...,Byq as in Theorem 1.6 such that the following holds. If M’
is a real-analytic generic submanifold of codimension d through 0 in C¥, then there
exists a germ at 0 of a holomorphic mapping ¥: ((Z5)#4+1),0) — (C4,0) such that M
and M’ are biholomorphically equivalent at 0 if and only if there exists a germ at 0 of
a holomorphic mapping F: (CV,0) — (Z}, 0) such that F|x, is a local biholomorphism
at 0 and (1.8) holds. Here £q denotes the Segre variety of M at 0.

We would like to point out that the hypothesis of finite type in Theorems 1.1 and
1.6 is crucial as is illustrated by the following simple example.
Example 1.8. Let M C C? be the real-analytic hypersurface given by

Im w = (Re w)|z|?,

which is of finite type at all points except along {w = 0}. Note that the family of
holomorphic mappings
Hy(z,w) = (z,tw),

for all t € R, sends M into itself. Thus, the conclusion of Theorem 1.1 (with Z(z,w) =
(2,0) € Xo) does not hold. Also, for any holomorphic function F(z,w), with F(0) =0,
the mapping

H(z,w) = (F(z,w),0)

sends M into itself and, hence, in contrast with the conclusion of Theorem 1.6, there
is no (non-trivial) condition on a mapping F to be a component of a holomorphic
mapping M into itself.

As an application of Theorem 1.1, we give a refinement of some results concerning
finite jet determination of holomorphic mappings between generic submanifolds (see
sec. 5 for details). This is a problem that has received much attention recently. We
mention here the papers(®=13], where results on finite jet determination of mappings
between generic submanifolds are obtained. The reader is also referred to the survey
papers [1%15] for further references and results.

2 An invariant description of normal coordinates

For the proof of Theorem 1.1, we shall need the following description of all normal
coordinates for a real-analytic generic submanifold. Let M ¢ CV be a real-analytic
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generic submanifold through 0 of codimension d. Recall that local holomorphic coor-
dinates (z,w) € C"* x C¢%, with n = N — d, are called normal if M can be expressed
near 0 as a graph of the form

Im w = ¢(z, Z, Re w), (2.1)

where ¢(z, 2, s) is an R%-valued real-analytic function in a neighborhood of 0 in C" x R¢
with

#(z,0,8) = ¢(0,x,s) =0. (2.2)
Equivalently, M can be defined by a complex equation of the form
w = Q(2,2,1), (2.3)

where Q(z, x,7) is a C%-valued holomorphic function, defined near 0 in C* x C* x C4,
satisfying
Q(Z, 0: T) = Q(OI X! T) =T (2'4)

Normal coordinates were first introduced by Chern-Moser('® (see also ref. [17]).

As in the beginning of sec. 1, let U be a small open neighborhood of 0 in CV, and
To the Segre variety of M at 0. Let z: I/ — ¥4 be a holomorphic submersion such that
#(0) = 0 and the d-dimensional complex submanifold W := 2~1(0) is transversal to £y
at 0. Observe that, for p € CV sufficiently close to 0, the submanifolds T, and W also
interscct transversally near 0. Hence, after shrinking U if necessary, we may define a
mapping o: U — W by letting o(p) be the single point of intersection between £, and
W. We denote by ¢:: W — W the restriction of o to W, i.c.

Lp,NW = {p)}, peW. (2.5)

1t follows that, for p € W sufficiently close to 0, :2(p) = p since ¢(p) € T, N W and
hence, ¢ is a local involution on W,

Theorem 2.1. Let M be a real-analytic generic submanifold of codimension d in
CN with 0 € M, and %, its Segre variety at p, for p close to 0. Let U € CV be a suf-
ficiently small neighborhood of 0 and z: (U, 0) — (Xp,0) be a holomorphic submersion
such that the d-dimensional complex submanifold W := Z~!(0) is transversal to Zp at
0, and ¢: W — W the corresponding mapping as defined in (2.5). Then there are open
neighborhoods of the origin V € C¥, X € £y, Y € W such that the following hold:

(i) ¢Y — Y is an anti-holomorphic involution fixing M NY.

(ii) There is a unique holomorphic submersion @:(V,0) — (Y,0) such that the
mapping H:(V,0) — (X x Y,0), where H(Z) = (2(Z),4(Z2)), is a biholomorphism
satisfying

HE,NV)=X x {«p)}, VpeY. (2.6)

(iii) If a: (X,0) — (C",0), and B: (Y, 0) — (C%,0) are biholomorphisms, then in the
coordinates (z,w) := (a0 z,B o) in CN¥ = C™ x C? the submanifold M is given near
0 by w = Q(z, z, W), where Q(z,x,7) is a C%valued holomorphic function satisfying

Q(z,0,7) = Q(0,x,7) = i7) (2.7)
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with £ the involution given by 8o ¢08~1. Moreover, if 8(Y N M) C RY, then i(w) =
and, hence, (2,w) are normal coordinates, i.e. the identity (2.4) holds.

Proof of Theorem 2.1. We let p(Z, Z) be a defining function for M as in the
introduction. Consider the germ at 0 of a holomorphic mapping f: (CV x C¥,0) —
(C4 x £o,0) defined by

f(Z,6) = (0(Z,€).2(2)), (2.8)
and the equation
f(Z: C) = (Os t)' (29)
We claim that Z — f(Z, 0) is a local biholomorphism at 0. Indeed,
dp
550.0 = (720,0, 220)) (210)

and, hence, the claim follows from the transversality of the intersection between Tg
and W at 0. By the implicit function theorem, there exists a unique germ at 0 of a
holomorphic mapping Z = 4(t,¢) from (Z x CV,0) — (CV,0) that solves equation
(2.9). It follows from (2.9) that ¢t — v(¢,0) has rank n := N —d at 0 and that ¢ — (¢, p),
for p € CV sufficiently close to 0, parametrizes an open piece of the Segre variety Zp-
We observe, from the definition of 7, that o(p) = (0, ), for p € CV close to 0; recall
that o(p) denotes the single point of intersection between X, and W, as defined above.
In particular,

«(p) = 1(0,p), (2.11)

where ¢ is the involution of W defined by(2.5), and hence the anti-holomorphic mapping
p+— (0, p) is a local diffecomorphism at 0 of W. It follows that the mapping (t,p) —
4(t,p) from Xy x W — C¥ is holomorphic in ¢, anti-holomorphic in p, and is a local
diffeomorphism at 0. Hence, if we denote by W* the submanifold {Z: Z € W}, then
the mapping I'(¢, p) := ¥(¢, p) from £y x W* — C¥ is a local biholomorphism at 0. As
a consequence, we may definc the germ at 0 of a holomorphic mapping @: (C¥,0) —
(W,0) by

w(I(¢,p)) = (0, p) (= ¢(p))- (2.12)

Since p — ¢(p) is a local diffcomorphism of W at 0, it follows that @ is a submersion at
0. Since ¢ is a local involution on W, we can find a sufficicntly smnall open neighborhood
Y of 0 in W such that ¢ is an involution on Y (i.c. : maps Y onto itself and :2 is the
identity). Indeed, if Yy is any sufficiently small open neighborhood of 0 in W, then
Y: = Yy Ne(Yp) is such a neighborhood. This proves (i). To prove (ii), let X be any
sufficiently small open ncighborhood of 0 in £y and define V: = T'(X x Y*). Then @,
defined by (2.12) is a holomorphic submersion (V,0) — (¥, 0). Observe that, for every
pEY, X 3t TI(¢tp) €V parametrizes ¥, N V. Hence, cq. (2.6) in Theorem 2.1 is
cquivalent to (2.12). This proves (ii).

To prove (iii), we assume that a and 3 are as in (iii), and let (2, w) be the coordinates
(2,w) := (@0 Z,Bow). In these coordinates, it follows from (ii) that Lo = {(z,w):w =
0}. Consequently, if p(z,w, Z,%) = 0 is a defining equation for M in the coordinates
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(2, w), then det 8p/8w(0) # 0. Hence, by the implicit function theorem, we may solve
for w in the equation j(z,w,2,w) = 0 and obtain a defining equation for M of the
form (2.3). The fact that

Q(2,0,7) = iT) (2.13)

is a direct consequence of (2.6). To prove the remaining part of (2.7), we note, by the
fact that (2.3) defines a real submanifold, that we have

Qz, x, Qx, z,w)) = w. (2.14)

By substituting z = 0 in (2.14) and using (2.13), we obtain Q(0, x, {(w)) = w. The
desired identity Q(0, x, 7) = i(F) follows by taking w = (7).

If B(Y N M) C R% then, since Y N M is the fixed point set of the involution ¢, it
follows that R4 N B(Y) is the fixed point set of the anti-holomorphic involution ¢ on
B(Y) c C4, ie. i(w) = ®. The identity (2.4) follows immediately. The fact that M
can be graphed as in (2.1) with ¢ satisfying (2.2) is a direct consequence of the implicit
function theorem and (2.4). This completes the proof of Theorem 2.1.

Remark 2.2. It is not difficult to see that all normal coordinates (z,w) are
obtained in the way described by Theorem 2.1 for some choice of submersion Z. The
details of this are left to the reader.

Remark 2.3 Let Z = (2,%) be given coordinates in C¥ = C® x C? in which
the Segre variety ¥o of M at 0 is tangent to {(Z,#): = 0} at 0. As a consequence
of Theorem 2.1 (and its proof), we obtain the following description of all possible
holomorphic transformations (z,w) = (F(£,®), G{2,%)) yielding normal coordinates
for M. Let F:(CV,0) — (C"*0) be an arbitrary local holomorphic mapping with
det (0F/02)(0) # 0. In the setting of the theorem, this corresponds to a choice of a
holomorphic submersion Z and a local chart o of £y, with ¥ = o0 Z. We note that
Z and « are not uniquely determined by F. However, any two different choices of 7
differ only by a reparametrization of ©y. An inspection of the proof of Theorem 2.1
shows that the @ given by (ii) in the theorem is uniquely determined by F. Moreover,
for any local chart 8 on W such that (M N W) c RY, the mapping G = Bo W
produces normal coordinates by (iii) of Theorem 2.1. It is easily seen that if we write
G(0,%) = g1() + iga(1d), where g1 and go are real-valued on RY, then there is a
one-to-one correspondence between choices of such parametrizations 8 and choices of
g1(w) with det (8g,/0w)(0) # 0. We conclude that G(2,) is uniquely determined by
F(2,1) and an arbitrary choice of ¢, (1) with det (8¢9, /81)(0) # 0.

3 Proof of Theorem 1.6 in the case of hypersu;-faces in C?

In order to illustrate the idea of the proof of Theorem 1.6, we first give a proof for
the case of hypersurfaces M, M’ in C2. Let M C C? be a real-analytic hypersurface
of finite type at 0 € M. Assume that (z,w) € C x C are normal coordinates at 0.
Thus M is given locally near 0 by (2.3), where the scalar-valued holomorphic function
Q(z, x, 7) satisfies (2.4). The finite type condition on the hypersurface M is equivalent
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to Q(z,x,0) # 0, which implies, by the normality of (z,w) that
QX(Z'J X 0) # Ov (3'1)

where we use the notation Q, = dQ/0x. The first four iterated Segre mappings (as
defined in refs. (2, 18] are given by:

vt :=(84,0), 47t ¢%) = (£, Q3 ¢, 0)),

(82, 6%) 1= (%, Q(E, ¢, Q(t%, 1, 0))), (32)

oAt 82,65, ¢1) o= (80, Qe £, Q3. 12, Q2% 1, 0)))).
For convenience, we shall also write v*(t!,...,t*) = (t*, u*(t!,..., t5)).

We let M’ C C? be another real-analytic hypersurface through 0 and (Z, @) normal
coordinates for M’. We refer to the corresponding objects for M’ by the addition of ™
Let H = (F,G) be a germ at 0 of a holomorphic mapping with H(0) = 0. If H sends
M into M’, then (see ref. [7], sec. 2)

Govt =% (Fov!,Fov?,Fov3, Fouv?). (3.3)
Conversely, if H satisfics (3.3), then we claim that H sends M into M’. Indeed, if we
take ¢! = 0 in (3.3) and complex conjugate, then we obtain

Govd =w(Fov!,Fov? Fovd) (3.4)

by using standard properties of the iterated Segre mappings (see ref. [18] or ref. [2]).
We now observe that

ﬁ4(t~l’£21£31£4) = @’(i"i,'t‘:!,ﬁ(i'l,i?’ﬂ)) (35)
By using (3.5) and (3.4) in (3.3), we conclude that
Govt=Q(Fov!, Fov?,Gord). (3.6)

Let M C €2 xC? be the complexification of M, i.e. the complex submanifold through 0
in C2xC? defined by w = Q(z, x, 7). Since (#!,82,83,84) - (v4(£1, 12,3, 1%), v3(¢, £2, 13))
is a holomorphic mapping of generic full rank into M (see ref. [18] or ref. [2]), we con-
clude that G(z,w) = Q(F (2, w), F(x,7), G(x, 7)) for all (z,w,X,7) on M and, hence,
H sends M into M’. This proves the claim.

Consider the equation (2, w) = v*(¢!,2, 3, t%), which can also be written in the form
z=1t1and

w=Q(z %, Q(t°, %, Q(t*,¢1,0))). (3.7)
We make the linear change of variables
443 t! -3
1 _ 2 _ 42 —
nE=— M=t o=— 3.8)
and obtain
w=Q(2,7' —0,Q(n' — 0,7%,Q(n*, 7' +0,0))). (3.9)

Let us use the notation = (n!,5?) and write

U(n: 2, Cf) = Q(Z, Tll =0, Q(’?l =0, 772: Q(fl21 Tll +0, 0)))'
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We have U(2n,0,0) = 0 and
ad
An) := a_aU(na zva)lz=a=o
= —Qx(n", 7%, Q("*,n",0)) + Qu(n', %, Q(n*, 7", 0))Qx(n*, 0", 0). (3.10)
Here we have used the notation Q(x,z,w) and hence the corresponding derivatives

Qy and @, refer to partial derivatives with respect to the first and last variable,
respectively. By differentiating the identity

Q(n*,n*,Q(*, 7', 0) =0
with respect to !, we obtain from (3.10)
A(n) = 2Qu(n', 7%, Q(n?, 7', 0))Qx(n*,n",0) #0,
in view of (3.1) and the fact that Q,(0,0,0) = 1. We may now apply the singular

implicit function theorem given in Proposition 4.1.18 in ref. [18] and conclude that
eq. (3.9) has a unique solution of the form

4 w
U=e(7),w,w), (3.11)

where ©(, 2, w’) is holomorphic near 0 € C* and ©(n,0,0) = 0. If we now substitute
for (¢',t2,¢3,¢%) in (3.3) using the linear change of variables (3.8), t* = z, and then
substitute for ¢ using (3.11), then we obtain
G(z,w) =@ (Fovl(n' +6), Fov?(n' + 6,77,
Foud(n! +0,7%, 7' — ©), F(z,w)), (3.12)

where © is given by the right hand side of (3.11). In particular, if H sends M into
M’ then the right hand side of (3.12) is independent of the variable 7. Conversely, if
F(z,w) is such that the right hand side of (3.12) is independent of the variable 5, then
we can define G(z,w) by (3.12). We claim that H = (F,G) sends M into M’. Indced,
for any n € C? sufficiently close to 0 with A() # 0, we have
z  U(n,z,0)

o( st 4Gy ) =° (313)
for all sufficiently small z and o, by the uniqueness of the solution (3.11) to eq. (3.9).
We now make the subsitution (z,w) = v*(#!,2,83,¢4), ! = (t' +3)/2, n? = t? in
(3.12). Using again the lincar change of variables (3.8), and t* = z in the identity
(3.13), we conclude, since in these variables we have u*(t!,t2,t5,¢%) = U(n, 2z, 0), that

(3.3) holds. This proves the claim, in view of the remarks above.
This proves Theorem 1.6 for hypersurfaces in C2 with

¥(F o Bi(Z,n), F o Ai(Z,9),F o B2(Z,n), F(Z))
=@l (Fov'(n' +0), Fov*(n' +0,7%),Fo®(y' + 6,7%, 7' — 8), F(z,w)), (3.14)
and hence
A(z,w,m) = 0% (0" + ©,77),
Bi(z,w,n) = vI(n' + ©),
By(z,w,m) = ¥3(n' + ©,9%,7' — ©),
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where © is given by the right hand side of (3.11). The open set  C C2 x C? can be
taken to be of the form

Inl <€, A #0, |z] <eA(n), |w]|<eA(n),
for € > 0 sufficiently small.

4 Proof of Theorem 1.6 in the general case and proof of Theorem 1.1

Proof of Theorem 1.6. We point out that, in view of Theorem 2.1, it suffices
to prove Theorem 1.6 in some sets of normal coordinates for M and M’. The proof in
the general case parallels that for hypersurfaces in C? given in sec. 3. Let M ¢ CV¥
be given in normal coordinates (z,w) € C* x C% near the origin in CV, i.e. by (2.3)
where Q(z,x,7) is 2 C%valued holomorphic function satisfying (2.4). The iterated
Segre mappings (see ref. [2, 18]) v/: (C’™,0) — (C¥,0) are given in these coordinates
by v1(¢') = (¢, 0) and, recursively, for j > 1 by

P, . ) = (I, L 0T = (0P, QT v (e, L, 1)), (4.1)

We let M’ ¢ CV' be another real-analytic generic submanifold through 0 and (Z, @)
normal coordinates for M’. We refer to the corresponding objects for M’ by the
addition of ~. Let H = (F,G) be a germ at 0 of a holomorphic mapping (CV,0) —
(CY',0) with H(0) = 0. Let m :=d + 1. As in sec. 3, if H sends M into M’ (cf. ref.
[7], sec. [2]), then

Gov®™ =™ (Fouvl,Fov?,...,Fov?=1 Fov?™), (4.2)
Conversely, if (4.2) holds, then, since the mapping

G i T Oz O ) W Y C It )

has generic full rank as a holomorphic mapping into the complexification M ¢ CV¥ xC¥
(see ref. [18] or ref. [2]), a similar argument to that in sec. 3 shows that H sends M
into M’.
As in sec. 3, we consider the equation (z,w) = v*™(t!,...,t*™) or, equivalently,
z =t and
w=u®"(t,... 2" 2). (4.3)

We make the lincar change of variables
g2 o —Pmed

d ) y O _'_2"a j=1,...,m—1, (4‘4)
and
pm=t". (4.5)
Thus, if we write = (#%,...,7™), 0 = (¢,...,0™), and

Un,z,0) =v*"0' +o1,..., 0™ + Om_r, 0™, 0 — 015, 7™ —Om1,2) (4.6)

then eq. (4.3) becomes
w=U(n,z0). 4.7
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Since M is of finite type at 0, it follows from Lemma 4.1.3 in [18] that U(»,0,0) = 0 and
that we may decompose ¢ = (¢,0”) € C? x C{m~1"—4_after reordering the variables
if necessary, such that

a / '
An) = det(gU(n,z,o N )|z=0‘a=0) #0. (4.8)

(The reader should be warned that the notation in ref. [18] is slightly different from
that of the present paper.) We should point out that in the hypersurface case in sec. 3
these facts were easily verified directly by using the condition of finite type. In the case
of higher codimension, the proof of these facts is more involved. We may now apply
the singular implicit function theorem given in Proposition 4.1.18 of ref. [18] and solve
for o/ in eq. (4.3) and obtain a unique solution of the form

"

, o 2z w

7 =01 5p B B ) (49)
where ©(, 6", z, w) is a C?-valued holomorphic function near 0 in C™" x C(m—1n—d x
C" x C4 with ©(n,0,0,0) = 0. Substituting for (¢!,...,t>™) in terms of 5, o, and 2 in
(4.2) using (4.4), t™ = ™, £*™ = 2, and then substituting for o’ using (4.9), we obtain
a relation of the form (cf. (3.12))

G(z,'w) = ‘I’(FO B, (Z, w, E)?F A Al(z,w,g), LR
F o By(z,w,€), F o Ag(z,w,£), F o Byyp1(2,w,€), Fz,w)), (4.10)

where £ = (n,0”) € C"™ x C(m-1)n—d_ The A; and B; are obtained by making the
substitutions described above for ¢!, . .., 2™ in the iterated Segre mappings v?,...,v*™
and their complex conjugates. The reader can verify from the construction of © that
A;(0,€) and B;(0,€) tend to 0 as £ — 0. If H = (F,G) sends M into M’, then the
right hand side of (4.10) is independent of £ or, equivalently, (1.8) holds. The converse
follows in the same way as in the hypersurface case in sec. 3. This completes the proof
of Theorem 1.6.

Proof of Theorem 1.1. We keep the notation of the proof of Theorem 1.6.
First, by using Theorem 2.1, we can find normal coordinates (Z, ) for M’ such that
Z = Z(%) is the submersion given in Theorem 1.1. If H is a germ at 0 of a holomorphic
mapping (CV,0) — (C¥’,0), then, in these coordinates, H = (F,G) with F = Zo H.
Hence, to prove Theorem 1.1, it suffices to show that we have an identity of the form

G=Uo(Foh},Fogl,...,Foh},Fog},Foh} ,,F), (4.11)

for all A sufficiently small. Let D: D — C™™ be a holomorphic mapping with D(0) =0
such that A(D(X)) # 0 for A # 0, where A(n) is the determinant given by (4.8). The
conclusion of Theorem 1.1 now follows by substituting £ = (n,¢") = (D(A),0) in the
identity (4.10).

Remark 4.1. In the case where M is a Levi-nondegenerate hypersurface it is
possible to prove a version of Theorem 1.6 with fewer parameters by using the itcrated
Segre map v® rather than v*. We shall illustrate this in the model case where M C C**!
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and M’ € C"'*! are respectively given by

n n’

Imw=(zZn=) |z and Imd&= (%= |5
i=1 i=1

By a calculation similar to that given in sec. 3, onc obtains that a germ at 0 of a

mapping H = (F,G) : (C**!,0) — (C™'+!,0) sends M into M’ if and only if

2y _ sl 42 :
Gle,w) = 2 F(zw) - F((Z’t In (t';ﬁ')"“ + i/ 2,8,0),
1

T8, w — 2i(z, tz),,)) (4.12)

""
where we have used the notation # = (#,]) € C x C*~!, for j = 1,2. Here equation
(1.8) is equivalent to the condition that the right hand side of (4.12) is independent of
the 2n — 1 parameters ¢! and ¢2. Note that Theorem 1.6 involves 3n — 1 parameters in
the case that M is a hypersurface.

Remark 4.2. We point out that the independence of the right hand side of
(4.11) on the parameter X is not sufficient to guarantee that F is a component of a
mapping sending M into M’. This is the case even in the context of self mappings of
the Levi-nondegenerate hypersurface M given in Remark 4.1 above with » > 1.

5 An application to the problem of finite jet determination

Let F be a class of germs of holomorphic mappings (X, z) — (Y,y), where X and
Y are complex manifolds with z € X and y € Y, respectively. We shall say that F
satisfies the finite jet determination property at x if there exists an integer & > 0 such
that for any pair H!,H? € F, the condition j*H = j*H' implies H = H’'. Here,
jXH denotes the k-jet at z of H. For instance, if M and M’ are real-analytic generic
submanifolds of codimension d through 0 in C¥ and CM’ respectively and F is a class
of germs at 0 of holomorphic mappings (CV,0) — (CV',0) sending M into M’, then
there are a number of sufficient conditions that can be imposed on M (or M’) to
guarantee that F satisfies the finite jet determination property (see refs. [8-13]). As a
consequence of Theorem 1.1, we obtain the following result.

Theorem 5.1. Let M and M’ be real-analytic generic submanifolds through 0 in
C¥ and CM', respectively, with M of finite type at 0. Let F be a class of germs at 0 of
holomorphic mappings (CV,0) — (CV’,0) sending M into M’ such that F satisfies the
finite jet determination property. Then there exists an integer & > 0 with the following
property. Let Z be a germ at 0 of a holomorphic submersion 2: (CN',0) — (Z5,0),
where I, is the Segre variety of M’ at 0, such that Z-'(0) is transversal to £j. If
H!,H? € F and j§(Zo H') = j&(Z o H?), then H' = H?.

By using a result from ref. [10], we immediately obtain the following corollary. Recall
that a generic submanifold is called holomorphically nondegenerate at 0 if there are no
germs at 0 € M of {non-trivial) holomorphic vector fields (i.e. (1,0) vector fields with
holomorphic cocfficients) that are tangent to M in a neighborhood of 0.

Corollary 5.2. Let M and M’ be real-analytic generic submanifolds of codimen-
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sion d through 0 in CV with M of finite type and holomorphically nondegenerate at
0. Let (Z,@) € C¥~¢ x C* be normal coordinates for M’ at 0. Then there exists an
integer k¥ > 0 with the following property. Let H!, H2:(CV,0) — (CV,0) be germs
at 0 of local biholomorphisms sending M into M’ and H? = (F?,G%), j = 1,2, in the
coordinates (Z,@). If jAF! = j¥F?, then H' = H2.

Recall that a germ at O of a real-analytic hypersurface M C C¥ is of D’Angelo finite
typelt® if there is no germ of a nontrivial complex curve C through 0 contained in M.
By using a recent result of Lamel-Mir(?® on finite jet determination for all mappings
between hypersurfaces of D’Angelo finite type, we obtain the following .

Corollary 5.3. Let M and M’ be real-analytic hyperfaces in C**! of D’Angelo
finite type at 0, with (Z, @) € C" x C normal coordinates for M’ at 0. Then there exists
an integer k > 0 with the following property. Let H?, H%:(C"*1,0) — (C"*,0) be
germs at 0 of holomorphic mappings sending M into M’ and HY = (F7,G%), j = 1,2,
in the coordinates (%, ). If j§F! = j§F?, then H! = H2.

Proof of Theorem 5.1. Assume that the mappings in the class F are determined
by their ko-jets at 0. In view of Theorem 2.1, it suffices to take normal coordinates
(Z,0) € C™ x C¥ for M’ at 0, write H = (F, G) in these coordinates, and show that
there exists a k 2 kg such that the k¢-jet of G at 0 is determined by the k-jet of F at
0. We start with eq. (4.11), which in view of Remark (1.2) can be written as follows

o2 = #(F (i (5)). £ (0(2.9).
F(ia(Z0) P ((Z) Flian (B F@). o0

where the iz,- and §; are as in (1.6). By differentiating (5.1) repeatedly with respect to
Z, setting Z = 0, we conclude that

dlel@ s )
572 0= 2 ai¥, (5.2)

j=—lalt

where each coefficient af is a polynomial in the components of j},al(lﬂ)ﬂ F for all
J 2 —la|l. Since the left hand side of (5.1) (and hence of (5.2)) is independent of A,
the coefficient a¥ = 0 for j # 0 and (8!®/G/82*)(0) = a§. This completes the proof
with & = ko(l + 1).

Remark 5.4. The proof of Theorem 5.1 shows that if the mappings H in F
are determined by their ko-jets at 0, then they are also determined by the k-jets at
0 of z o0 H, where & = kqo(! + 1) and ! is the integer given in Remark 1.2 (depending
only on M). However, we do not know any example where the ko-jet at 0 of Zo H
does not already determine H. If M and M’ are strictly pscudoconvex hypersurfaces
in CV, then it follows from the work of Chern—-Moser!!®) that ko can be taken to be
2. Kruzhilin-Lobodal?!! proved that for non-spherical strictly pseudoconvex hypersur-
faces, the stability group can be linearized in Chern-Moser normal coordinates and,
hence, one may take &y = 1. In both the spherical and non-spherical case, one can
check directly that the kg-jet of Z o H suffices to determine H.
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