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0. Introduction

Let M C CN and M’ ¢ CV' be two smooth (C™) generic submanifolds
with pp € M and py € M’. We shall consider holomorphic mappings
H : (CV,po) = (CV', p}), defined in a neighborhood of py € CV, such
that H(M) € M’ (and, more generally, smooth CR mappings (M, py) —
(M', pp); see below). We shall always work under the assumption that M
is of finite type at pg in the sense of Kohn and Bloom—Graham, and that
M’ is finitely nondegenerate at pf, (see Sect. 1 for precise definitions). More
precisely, we shall assume that M’ is £g-nondegenerate at pj), for some
integer £op > 0. (For a real hypersurface, 1-nondegeneracy at a point is
equivalent to Levi nondegeneracy at that point.)

We denote by J the complex structure map on TCV. Recall that for
p € M, TJM denotes the complex tangent space to M at p, i.c. the largest J-
invariant subspace of T;, M, the tangent space of M at p. A smooth mapping
H : M — M'is called CR if its tangent map dH maps T5M into T,"{(p)M !
forevery p € M. A CR mapping H : M — M’ is called CR submersive at
pif dH maps T; M onto T,‘}(p)M ’. A holomorphic mapping H sending M
into M’ is called CR submersive if its restriction to A is. To a smooth CR
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mapping H : M — M’, and pg € M, one may associate a unique formal
(holomorphic) power series mapping

(0.1) H(Z)~ aa(Z - po)*, aaeCV,

which sends (M, po) into (M, pp). (See Sect. 1 for details, definitions, and
discussion.) If I extends holomorphically to a neighborhood of po in CV,
then H(Z) is the Taylor series of H at pp. For p € CNandp’ € CV', we
shall denote by J*(CN,CN'), ) the jet space of order k of holomorphic
mappings (CV, p) = (CV', p'). (See Sect. 2 for further details.)

Our main result gives rational dependence of the formal power series
mapping associated to a CR submersive mapping, and more generally of
a formal CR submersive power series mapping (M, po) — (M’, pg) (sec
Sect. 1 for precise definitions), on its jet of a predetermined order.

Theorem 1. Let M and M’ be smooth generic submanifolds through po €
CN and ply € CV', respectively, such that M is of finite type at po and M’
is £o-nondegenerate at p|, for some integer £y > 0. Let d be the codimension
of M. Then there exist a finite number of formal power series mappings of
the form

k
02) 2z, 4~ }3;2%,{ (Z-po)®, k=1...,1,

where P* and Qﬁ are (C and CV' valued, respectively) polynomials on
the jet space JW+Deo(CN CN ')(po.p{,) and 1% are nonnegative integers,
such that the following holds. For any smooth CR submersive mapping
or, more generally, any formal (holomorphic) CR submersive power se-
ries mapping H : (M,po) = (M',p}), there exists k € {1,...,1} with

Pk (j,(,g’“)“ (ﬁ)) # 0ifd+1is even and P* (j,‘,‘j* ”“’(Ifl)) #0ifd+1
is odd, and for any such k,

H(Z) ~ (z, j};g“)fo(f{)) ifd + 1 is even,

(0.3) . x FOTIYEN T ]
H(Z) ~W" | Z,jpo (H)}, ifd+ 1isodd.

If, in addition, M and M’ are real-analytic, then the series (0.2), for k €
{1, s 1}, converges in a neighborhood of (pg, Ao) in CV x J (d+1)bo(CN
CN Y(wo.py) Jor every Ao satisfying Pk(Ag) #0.

Theorem 1, which will follow from the more general Theorem 2.1.5,
has a number of applications. Our first application, which will be given in
a more general form in Theorem 2.1.1, states that a holomorphic mapping
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sending M into M’ which is CR submersive at pg is uniquely determined
by finitely many derivatives at pg.

Theorem 2. Let M, po, d, M', py, and €y be as in Theorem 1. Then there
exists an integer ko, depending only on M, with 1 < ko < d + 1 such that
the following holds. If H', H? : (CN,po) — (CV',p}) are holomorphic
mappings near pg such that HI (M ) C M’, HJ is CR submersive at py, for
i=1,2,and

dlel pr1 glel g2
Bz 0) = oZa —7a(po),
then H! = H?,

The conditions of finite type and finite nondegeneracy in Theorem 2 are
also essentially necessary, in a certain sense, for the conclusion to hold. We
refer the reader to the discussion in Sect. 2.2.

Our second application, Theorem 3 below (which is an easy consequence
of Theorem 1), deals with real-analytic submanifolds. It gives sufficient
conditions for all CR submersive formal mappings between real-analytic
generic submanifolds to be convergent.

(0.4) Va: |a| < koeo,

Theorem 3. Let M and M’ be real-analytic generic submanifolds through
po € CN and P € cV, respecnvely, such that M is of finite type at pg
and M’ is finitely nondegenerate at py. Then, any formal (holamorphzc) CR
submersive mapping H : (M, po) — (M, D)) is convergent, i.e. H is the
Taylor series at py of a holomorphic mapping H : (CV,pg) — (CV', 25)
near po with H(M) C M. In particular, (M, py) and (M, p}) are formally
equivalent if and only if they are biholomorphically equivalent.

Forour nextapplication of Theorem 1, we shall denote the set of holomor-
phic mappings H : (CV,pp) = (CV', pj) which map M into M’ and are
CR submersive at pg by F (M, pg; M’, pj). This set has a natural inductive
limit topology induced by uniform convergence on compact neighborhoods
of po. We have the following result, which will be proved in Sect. 4.3.

Theorem 4. Let M, po, M’, and pj, be as in Theorem 3. Let d be the
codimension of M, and €y a nonnegative integer such that M’ is £y-nonde-
generate at py. Then there exist two real algebraic subvarieties

(0.5) A, B c JU4+Do(cN N
such that the mapping

) (PO.P{))

(0.6) j((,dﬂ)eo : F(M,po; M', pp) — J(dﬂ)eo(CN’CN')(po,p{,)

is a homeomorphism onto A\ B. In addition, the image A\ B is totally real
at each nonsingular point.
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The case where (M,pg) = (M’,pp) is of particular interest. In this
case, the set of mappings F(M, po; M, pg) consists of biholomorphisms of
(CV, po) (see Corollary 1.27) and, hence, forms a group under composi-
tion. This group is called the stability group of M at pg, and is denoted
Aut(M, po). It follows from Theorem 4 that Aut(M, po), where M is a real-
analytic generic submanifold of codimension d which is £p-nondegenerate
and of finite type at pg € M, is a real Lie group which can be homeomor-
phically embedded as an algebraic, totally real subgroup of the jet group
G+ (CNy, (see also Theorem 2.1.14). Here G+ (CN), consists
of those elements in J(+Db(C¥, CVN )(po.po) Which are invertible.

Recall that a real-analytic generic submanifold M C C¥ is called holo-
morphically nondegenerate atp € M if there are no non-trivial holomorphic
vector fields (i.e. holomorphic sections of the holomorphic tangent bundle
T'C™) near p which are tangent to M. If M is connected, then it is ei-
ther holomorphically nondegenerate at every point or at no point (sce e.g.
[BER4, Theorem 11.5.1]). We say that a connected real-analytic generic
submanifold M is holomorphically nondegenerate if it is so at some (and
hence at every) point. The relation between holomorphic nondegeneracy
and finitc nondegeneracy is discussed in Sect. 2.2. The following result is
then a corollary of Theorem 4 and the discussion in Sect. 2.2.

Theorem 5. Let M be a connected, real-analytic, holomorphically non-
degenerate, generic submanifold of codimension d in CN which is of finite
type at some point. Then there exists a proper real-analytic subvariety V of
M such that the following holds for every p € M \ V. The jet mapping

JEHDN=d) ; Au(M, p) - GU+H(N-d)(CNY,

is a continuous injective group homomorphism which is a homeomorphism
onto a totally real algebraic Lie subgroup of GU+V(N—-d(CN),,

In Sect. 5, we consider smooth perturbations of generic submanifolds,
satisfying the appropriate conditions, and study the behavior of the func-
tions ¥’ in Theorem 1 under such perturbations (Theorem 5.1.1). As a
consequence (Theorem 5.1.9) we obtain the result that if the stability group
of a real-analytic generic submanifold M is discrete, then it remains dis-
crete under real-analytic (small) perturbations of M. One of the more im-
portant examples of a perturbation is allowing the base point pp € M to
vary. As another application of Theorem 5.1.1, we show that the topological
space Upe mprem F (M, p; M', p') is homecomorphically embedded in the
jet manifold J(@+Dé(CN CN') (see Sect. 5.2) as adifference A\ B, where
ABcCJ (d+1)bo(CN CN ') are real-analytic subvarieties whose fibers in
J@+D(CN CN'), ) are real-algebraic (see Theorem 5.2.9).

The paper concludes with an application, in Sect. 6, of our methods
to the study of algebraicity of holomorphic mappings which map one real
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algebraic submanifold into another; the reader is referred to Theorem 6.1
for this result.

An important tool in the proofs of the results in this paper is the sequence
of Segre mappings (see Sect. 3.1), which in the real-analytic case were
introduced in [BER1] along with the Segre sets. The Segre variety of a
real-analytic hypersurface M, which coincides with the first Segre set, was
first introduced by Segre [Se]. Its use in the study of holomorphic mappings
between real-analytic hypersurfaces was pioneered by Webster [W1], [W3].
Since then, its use has been crucial in the work of many mathematicians,
including Diederich—Webster [DW], Diederich-Fornaess [DF], Forstneric
[F], Huang [Hu], Diederich-Pinchuk [DP], and others. (See also the notes
in [BER4, Chapters X-XII].) The Segre sets, introduced in [BER1] and
playing a crucial role in the proofs in [BER1] and [BER2], have also been an
important tool in the work of Zaitsev [Z2], [Z3]. We should also mention here
the work of Christ, Nagel, Stein, and Wainger [CNSW] in adifferent context,
in which they study the relation between certain curvature conditions on
families of submanifolds in R"™. Two of these conditions are strikingly similar
to the two equivalent conditions in Theorem 3.1.9.

The study of automorphism groups of bounded domains in CV goes
back to H. Cartan [HC] (and was later continued by Kaneyuki [Ka] and,
more recently, by Zaitsev [Z1]). The structure of the local transformation
groups of Levi nondegenerate hypersurfaces in C2 was investigated by E.
Cartan (EC1], [EC2] in connection with his work on the biholomorphic
equivalence problem. His results were later extended to Levi nondegenerate
hypersurfaces in higher dimensions by Tanaka [Ta] and Chem-Moser [CM].
In particular, the conclusions of Theorems 2,3, and 4 for real-analytic Levi
nondegenerate hypersurfaces follow from their work. The convergence of
the formal series (0.2) in Theorem 1 in the real-analytic case seems to be
new even for Levi nondegenerate hypersurfaces. Further results on trans-
formation groups of Levi nondegenerate hypersurfaces were obtained by a
number of mathematicians, including Webster (W2], Burns-Shnider [BS],
and the Moscow school (Beloshapka, Krushilin, Loboda, Vitushkin, etc.;
see Krushilin (Kr], and Vitushkin [Vi]). Stanton [St1], [St2] considered in-
finitesimal CR automorphisms on general real-analytic hypersurfaces. (See
also [BER2] for results on infinitesimal CR automorphism in higher codi-
mensions.) The case of higher codimensions was considered by Tumanov-
Henkin [TH], Tumanov [Tu] in the case of quadratic manifolds, and by
Beloshapka [B] in the more general case where the Levi forms of the sub-
manifolds are nondegenerate. For these classes of manifolds, the conclusion
of Theorem 2 follows from their work.

We conclude the introduction by giving a brief history of results related
to those of Theorems 14 above. Theorem 2, in the case N = N’ with M
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and M’ real-analytic and of the same dimension, was obtained in [BER2].
In [BER3], Theorems 1, 3, and 4, with slightly weaker conclusions, were
proved in the case N = N’ with M and M’ real-analytic hypersurfaces.
Zaitsev [Z2] proved a weaker version of Theorem 1 for real-analytic CR
submersive mappings (in the real-analytic case), namely one in which the
jet space of order (d + 1)¢; is replaced by that of order 2(d + 1)¢p and
where the dependence on the jets is only local analytic instead of rational.
In particular, his result shows that the stability group is a Lie group with
the natural topology. However, for the application given by Theorem 3 it is
important to prove Theorem 1 for formal CR submersive mappings.

For most of the proofs of the results mentioned above, it is convenient to
work with formal mappings between formal generic submanifolds. Hence,
most results presented here will be reformulated, and proved, in this more
general context. The following section presents the necessary preliminaries
and definitions. In what follows, the distinguished points po and pf on M
and M’, respectively, will, for convenience and without loss of generality,
be assumed to be 0.

1. Preliminaries on formal submanifolds and mappings

Let C[[z]] = C[[z1,.-. ,zk]] be the ring of formal power series in z =
(z1,...,xx) with complex coefficients. Suppose that p = (p1,... ,p4) €
C[[Z,¢])¢, where Z = (Z1,...,Zn) and ¢ = ({1, ... . (), satisfies the
reality condition

(1.1) p(Z,¢) ~ p(¢, Z),

where p is the formal series obtained from p by replacing each coefficient in
the series by its complex conjugate; we use the symbol ~ to denote equality
of formal power series. If, in addition, the series p satisfies the condition
p(0) =0, and

(1.2) 9p1(0) A ... ABpa(0) #0,

then we say that p defines a formal real submanifold M of CV through 0 of
codimension d (and dimension 2N — d). If M’ is another such formal real
submanifold defined by p’ = (p}, ... . p};), then we shall say that M = A{’
if there exists a d x d matrix of formal power series a(Z, ¢) (necessarily
invertible at 0) such that

(1.3) 2(Z,¢) ~ a(2,0)p(Z,€).

These definitions are motivated by the fact that if in addition the com-
ponents of p arc convergent power series, then the equations p(Z,Z) = 0
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define a real-analytic submanifold M of CV through 0. Moreover, if M’ is
another such defined by a convergent power series p’, then (1.3) holds if and
only if M and M’ are the same. Also, if M is a smooth real submanifold
in CV through 0, then the Taylor series at 0 of a smooth defining function
(2, Z) of M near 0, with Z formally replaced by ¢, defines a formal real
submanifold through 0. These observations will be used to deduce the re-
sults given in the introduction from the corresponding results for formal real
submanifolds.
If the formal series p defining M satisfies the stronger condition

(1.4) 8201 (0) A ... ABzpa(0) # 0,

(which in particular implies (1.2)) then we say that the formal real subman-
ifold M is generic. We say that a formal vector ficld

(1.5) X = Z(a, ZOaz +b;(2, Oac,)
with a;, b; € C[[Z, ¢]], is tangent to the formal real submanifold M if
(1.6) Xp(Z,¢) ~a(Z,0)p(Z,0),

for some d x d matrix of formal power series a(Z, ¢).

We say that the formal vector field X in (1.6) is of type (0, 1) if aj ~0,
J =1,..., N, and similarly of type (1,0) if the b; ~ 0. Let Dy denote
the C[[Z (]]-module generated by all formal (0, 1) and (1,0) vector fields
tangent to M, and gas the Lic algebra generated by D);. We denote by
9ar(0) the complex vector space obtained by evaluating the coefficients of
the formal vector fields in gas at 0. Similarly, we use the notation Ds(0)
for the complex vector space obtained by evaluating the coefficients of the
formal vector fields in Dy at 0. (The reader should observe the analogy, for
a smooth real submanifold M through 0, between the complexified complex
tangent space CTgM to M at 0 and Djs(0) for the corresponding formal
submanifold.) Thus, we have Dps(0) C gM(O) C T¢C?N, where T}C2N
denotes the holomorphic tangent space of C2V at 0.

We say that M is of finite type at 0 if dim¢ gps(0) = dim M = 2N - d.
(Note that the vector space Djs(0) has dimension 2N — 2d; this follows
easily from the fact that M is generic and of codimension d.)

We shall also need the notion of finite nondegeneracy of a formal generic
submanifold. We say that the formal generic submanifold M is finitely non-
degenerate at 0 if there exists an integer ¢ > 0 such that

(1.7) span {L“ (ZZ)(O) 1<j<d, [a|<£}=CN.
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Here, Ly,..., Ly, is a basis for the C{[Z, ¢]]-module of all formal (0, 1)
vector fields tangent to M (son = N — d) modulo those whose coefficients

are in the ideal generated by py, ... , pg. We also use multi-index notation,
i.e. we introduce the vector L = (Ly,...,Ly) and, for any a € Z7}, we
write
n
(1.8) LY=L . LS, ol =) ay.
i=1

More precisely, we say that M is €y-nondegenerate at 0 if £g is the small-
est integer for which (1.7) holds. It is an easy exercise to show that the
definition of ¢y-nondegeneracy (and hence that of finite nondegeneracy)
does not depend on the choice of basis L = (L, ..., Ly), defining series
p = (p1,... ,pa),orthe choice of coordinates Z. Hence, {o-nondegeneracy
is a property of the formal generic submanifold M. The reader is also re-
ferred to [BER4] for further discussion of these notions, as well as that of
finite type, for smooth and real-analytic generic submanifolds.

Let H : (CN,0) — (CV',0) be a formal mapping, i.e. H € C[(Zy,... ,
Zn)]V' such that each component of H(Z) = (Hy(Z),... , Hx/(Z)) has
no constant term. To such a formal mapPing H we associate a formal map-
ping H : (CN x CN,0) = (CV' x CV',0) defined by

(1.9) H(Z,¢) ~ (H(Z), H(C))-

If M and M’ are formal real submanifolds of C™ and CV’ defined by formal
series p(Z,¢) = (p1(Z,),--. ,pa(2.¢)) and p'(Z'.¢") = (p1(Z', ("),

. yPp(Z', (")), respectively, then we say that the formal mapping H, as
above, maps M into M’, denoted H : (M,0) — (M’',0), if

(1.10) P(H(Z),H(C)) ~ c(Z,¢)p(Z,C),

for some d’' x d matrix ¢(Z,() of formal power series. It will be conve-
nient to choose normal coordinates, Z = (z,w) and { = (x,7) with
z= (21, 2Zn)yw = (W1,... ,wg)(son+d=N),x = (X1,.-- 1 Xn)
and T = (1,...,74), in CV¥ x CV for M at 0. By this we mean a formal
change of coordinates Z = Z(z, w) with Z(z,w) a formal invertible map-
ping (CV,0) — (CV,0), and ¢ = Z(x, 7) the corresponding change, such
that

(1.11) p(Z(z,w), Z(x, 7)) ~ alz,w, X, 7)(w — Q(2, X, 7)):

where a(z, w, x, 7) is an invertible d x d matrix of formal power series, and
the vector valued Q € C|[z, x, 7]}¢ satisfies

(1'12) Qj((]’X’T)NQj(ZyOsT)"‘Tj, j=1,...,d.
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(See [BER4, Chapter IV.2].) It follows from the reality of p that
(1.13) p(Z(z,w), Z(x, 7)) ~ bz, w, %, 7)(T = Q(x, 2, w)),

where b(z, w, x, 7) is an invertible d x d matrix of formal power series.
Similarly, we choose normal coordinates Z' = (2/,w’) and ¢’ = (x/,7’) in
CN' x CV' with 2/ = (2},... .2/, ) and w’ = (w},... ,wly) son/+d =
N'), such that M’ is defined by w' — Q'(2/, X', ') (or, more precisely, by
a'(z,w, x, 7)(w' - Q'(Z', X', 7’)), for some matrix a’ making the expression
real). Then we may write the formal mapping H = (F,G), with F =
(F,...,Fy)and G = (Gy,...,Gg), and the condition H : (M,0) —
(M’,0) can be expressed by either of the equations

G(Za w) ~ Q’(F(z,w)’F(XaT)7G(X9 T))
(1.14) or

G(x,7) ~ Q'(F(x,T), F(z,w), G(z,w)),

for 7 = Q(x, 2, w) or w = Q(z, x, ). An observation that will be useful
is that G(2,0) ~ 0, as is easily verified by takingw =7 =0and x = 0 in
(1.14).

Note that if M and M’ correspond to real-analytic submanifolds and the
formal mapping H defines a holomorphic mapping (CV,0) — (CV',0) in
some neighborhood of the origin, then H : (M,0) — (M’,0) if and only
if H(M) C M. Moreover, if M C CV and M’ ¢ C"' are smooth CR
submanifolds through the originand k : M — M’ is a smooth CR mapping,
with 2(0) = 0, then there exists a unique formal mapping H : (M,0) —
(M’, 0) such that, for any local parametrization

(1.15) RN-45U >z Z(z) e M,
with Z(0) = 0, we have
(1.16) h(Z(z)) ~ H(Z(z)),

where the left hand side of (1.16) refers to the Taylor expansion at 0 of the
smooth mapping x + h(Z(z)), and the right hand side is taken in the sense
of composition of H and the Taylor series at 0 of Z(z). (See e.g. [BER4,
Sect. 1.7]). Observe that if 4 is the restriction to M of a holomorphic mapping
(CV,0) = (CN',0), then H(Z) is the Taylor series of this holomorphic
mapping.

Given a formal mapping H : (CV,0) — (C"', 0), we denote the tangent
mapping of the associated formal mapping # : (CV x CV,0) - (CN' x
CN',0)bydH : TiC?N T3C?V'; thus, dH is the mapping taking a vector

il 8 )
(117) X = J=Zl (QJE-Z—J -+ b"a_cj) y Qg bj eC
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in TJCV to the vector

NI

(L18)  dHX) =" ((XH,-(Z))(O)% - (Xﬂj(())(o)a%)
2 2

j=1

in THC"’. Recall that we say that the vector X in (1.17) is a (1,0) vector
ifb; =0, =1,...,N,and (0,1) vectorifa; = 0,5 = 1,... ,N.Itis
clear that dH maps (0, 1) vectors to (0, 1) vectors and (1, 0) vectorsto (1,0)
vectors. If H : (M, 0) — (M’,0), then it follows that dH maps D (0) into
Dy (0). We shall say that a formal mapping H : (3,0) — (M’,0) is CR
submersive at 0 if

(1.19) dH(Da1(0)) = Dar(0).

Proposition 1.20. Ler M and M’ be formal generic submanifolds through
the origin in CN and CV', respectively. If H : (M,0) — (M',0) isa CR
submersive formal mapping, then dH(ga1(0)) = gasr(0).

Proof. We denote by (p) the ideal in C[[Z, {]] generated by p1,... ,p4, @
set of defining formal series for M, and define similarly the ideal (p’) in
C[[Z’,¢")) corresponding to M’. Let L},... , L], be a basis for the formal
(1,0) vector fields tangent to M’ modulo those whose coefficients are in
the ideal (o) and L},... , L], a basis, modulo (p'), for the formal (0, 1)
vector fields tangent to M’. We claim that for any formal (1, 0) vector ficld
L tangent to M there exist formal power series a; = @;(Z,(),j = 1,... n/,
such that for any f € C[[Z’,(’]] we have

(1.21) L(foH) ~ Y _a;((Ljf) o H) mod (p)
i=1

as power series in (Z, (). To prove the claim, it suffices to find a;(Z, ¢)
satisfying (1.21) with f(2',¢') = Z}, k = 1,... N'. This is done by using
the chain rule and elementary linear algebra. The details are left to the reader.
Similarly, for any (0, 1) vector field L tangent to M, we can find &;(Z, ()
such that

!

(1.22) L(foH) ~ D _a;((L;f) o H) mod (p)
i=1

as power series in (Z, ). Thus, for bases, modulo (p), L1, ... , Ln of the
(1,0) vector fields tangent to M and Ly, . .. , L, of the (0, 1) vector fields
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tangent to M, we obtain two n x n' matrices (a;jx(Z,()) and (&;x(Z, ¢))
of formal power series such that

Li(foH) ~ Za,k((L f)oH) mod (p),

k_

Li(f o) ~ Za,k«L f)oH) mod (p),

k=1

(1.23)

forall f € C[[Z’,(’]]. Itis easy to verify that (1.19) implies that the rank of
each of these matrices at 0 equals n’. Hence, we may assume, after a linear
transformation of the L;’s and L;’s (over C[[Z, (]]) if necessary, that for
ji=1,...,7

foH)~ (Ljf)oH mod (p),
Lj(f o H) ~ (Lif) oM mod (p),
forall f € C[[Z’, ]). It follows immediately from (1.24) that we also have
(1.25) [X,Y](f o) ~ (X', Y']f) o} mod (p),
forany X,Y € {L,,... JLpt Lo, ,Enr} and corresponding X', Y’ €

{Ly,..., L, L ens L!,} (i.e.such that X, X’ and Y, Y” satisfy (1.24)).
In particular, we have

(1.24)

(1.26) dH([X,Y]o) = [X',Y'}o.

Repeating this argument for commutators of any length, we can conclude
that dH(gar(0)) = gas(0). This completes the proof of Proposition 1.20.
o

Corollary 1.27. Let M and M’ be formal generu: submanifolds of codi-
mension d and d’ through the origin in CN and CV', respectively. Assume
that M’ is of finite type at 0, and let H : (M,0) — (M’,0) be a CR submer-
sive formal mapping. Then dH(T{CN) = TYCV and d > d'. If in addition
N = N/, then dH is an isomorphism of T’C“ into itself, i.e. the formal
mapping H is invertible.

Proof. Since dH maps Dps(0) onto Dy (0) by assumption, and hence
g1 (0) onto gass(0) by Proposition 1.20, it follows that the induced map-
ping from the quotient space gas(0)/Das(0) is onto gas+(0) /Dy (0). Since
M’ is of finite type at 0, it follows that dim gs+(0)/Dps(0) = d'. Since
d > dimgar(0)/Dar(0), it follows that d > d'. (Hence, we also have
N>N')
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To prove that dH (T3CV) = TC"', we take normal coordinates Z =
(z,w), ¢ = (x,7) in C?¥ for M and Z' = (', w'), ¢’ = (x',7') in CV’
for M'. For H = (F,G), the fact that H : (M,0) — (M’,0) is expressed
by (1.14). Also, dH(Das(0)) = Dyys(0) is equivalent to F/0z(0) having
rank n'. Using the facts that G(z,0) ~ 0 and M’ is of finite type at 0, and
applying Proposition 1.20, we conclude that the rank of G/8w(0) is d'.
This completes the proof of dH (TCN) = T{CN'. The second statement
of Corollary 1.27 is an immediate consequence of the first. O

2. Uniqueness and parametrization of formal mappings
2.1. Main results

In this section, we shall give results on uniqueness and parametrization of
formal mappings between formal real submanifolds from which Theorems
1-3 presented in the introduction will follow. We first give sufficient condi-
tions so that a mapping sending M into M’ is determined by a finite number
of derivatives of the mapping at 0. The necessity of these conditions will be
discussed in Sect. 2.2.

Theorem 2.1.1. Let M and M’ be formal generic submanifolds through
0 € CN and0 € CV', respectively, such that M is of finite type at 0 and M’
is £o-nondegenerate at 0 for some integer {y. Let d denote the codimension
of M. Then there exists an integer ko, depending only on M, with1 < ko <

d + 1, such that the following holds. If H', H? : (M,0) — (M’,0) are CR
submersive formal mappings such that

olal ! dlel 2
aza (0 =Sz

then H! ~ H2.

Remark 2.1.3. f N = N', dimM = dim M’, and HY, j 1,2, are
invertible formal mappings, then d#7 : Dar(0) = Dap(0), J = 1,2, are
necessarily isomorphisms, and hence surjective. More generally, ifn=n'
(recall that n denotes N — d, where d denotes the codimension of M, and
similarly for n’ and M’) and the mappings dH? : Dp(0) — Dar(0),
j = 1,2, are injective, then they are also necessarily surjective. (Indeed,
dim Dps(0) = 2n.)

(2.1.2) 0), Va : |a| S koZO,

It is clear from the remarks in Sect. 1 that Theorem 2.1.1 is a more general
version of Theorem 2 in the introduction. The proof of Theorem 2.1.1 will
be given in Sect. 3.4.



Rational dependence of smooth and analytic CR mappings 217

Let E(CY,C"') o) denote the set of germs of holomorphic map-
pings (CV,0) — (CV',0) and E(CN,CN")(g,9) the set of formal map-
pings (C¥, 0) — (CV',0). For each positive integer k, we denote by
J&(CV, c )(0,0) the Jetspaceoforderkof holomorphic mappings (CV, 0)

— (CM',0), and by j§ : E(CV,CY )00 = JF(CN,CN') ) the jet
mapping taking a formal mapping H to its kth jet at 0, 5(H). In particular,
JY(CN,C¥')0,0) can be viewed as the space of linear mappings from CV
to CV'. For k > I > 1, we denote by

(2.1.4) do'  JHCN,CV') g0 = JH(CN,CM) 00

the canonical mapping induced by 5§ : E(CN,CN')g,0y = J(CN,CN') (0,0
Given coordinates Z and Z’ on CV and C™', the jet space J*(CV,
cV )(0 0) can be identified with the set of polynomial mappings (CN,0) =

(CN',0) of degree k. The coordinates on J*(CV,CN') g g, which we will
denote by A, can then be taken to be the coefficients of these polynomials.
Observe that formal changes of coordmates in CV and CV' give a polyno-
mial change of coordinates in J*(CV,C"')gg).

The reader is referred e.g. to [GG] or [BER4, Chapter XII] for further
discussion of these notions. Our main result is the following, which in par-
ticular implies Theorem 2.1.1 above and Theorem 1 in the introduction (we
leave the details of the proofs of these implications to the reader), and from
which several other theorems will be deduced below.

Theorem 2.1.5. Let M and M' be formal generic submanifolds through
0 € CN and0 € CV' of codimension dand d', respectively, such that M is of
finite type at 0 and M’ is £3-nondegenerate at 0 for some integer o. Assume
thatn > n', wheren = N—dandn' = N’ —d'. Then there exists an integer
ky with 1 < ky < d + 1, such that for each 5 = (j1,... ,jn’), with 1 <
J1 < ... < Jnr < n, there exists a polynomial PI on J51%(CN,CN ')(0,0)

and a formal power series in Z = (2, ... ,ZN)
(2.1.6) (Z,4)~ > "f”(A),. ze,
jai>0 P7(4)=

where ck(A) are CV' valued polynomials on J*1%(CN ,CV Y0.0) and &,
nonnegative integers, satisfying the following. For every formal mapping
H: (M,0) — (M’,0), which is CR submersive i.e.

(2.1.7) dH(D31(0)) = Dar(0),
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there exists j as above such that PJ (jg‘z"(H )) # 0 when ky is even,

Pi(j5%(H)) # O when ky is odd, and

H(Z) ~ ®(Z, 551 (H)), if ky is even,
2.1.8 ]
(2.18) H(Z)~ & (z, iBB(H)), if ky is odd.

In addition, if M and M " are real-analytic, then for every j as above and
Ao with Pi(Ag) # 0 the series (2.1.6) converges uniformly for (Z, A) near
(0, Ag) in CN x Jhrko(CN CN') g ).

In what follows, we shall denote by F(M, M') = F(M,0; M’,0) the
set of formal mappings (M,0) — (M’,0) which are CR submersive. (For
brevity, we here suppress the dependence on the base points of M and M’,
which in this section arc assumed to be the origin in the respective spaces.)
When M and M’ are real-analytic, then we also denote by F (M, M') :=
F(M,0; M’,0) those formal mappings in F(M, M’) that are convergent,
and hence define holomorphic mappings which map a neighborhood of 0 in
M into a neighborhood of 0 in M’. Thus, in this notation, Theorem 3 in the
introduction gives sufficient conditions on M and M’ so that F(M, M') =
F(M, M.

The following result, which will be proved in Sect. 4.3, is based on
Theorem 2.1.5.

Theorem 2.1.9. Let M and M’ be formal generic submanifolds through
0 € CN and0 € CN', respectively, such that M is of finite type at 0 and M’
is £g-nondegenerate at 0 for some integer Lo. Then there exist an integer k1,
depending only on M, with 1 < ky < d-+1 where d denotes the codimension
of M, and two real algebraic subvarieties A, B C Jkifo (cN,cN ' )(0,0) Such
that the image of the mapping

(2.1.10) b L F(M, M) - TR0V . CV') o)

coincides with A\ B. In addition, the image A\ B is totally real at each
nonsingular point.

Remark 2.1.11. If M and M’ are real-analytic, then, in view of Theorem 3,
the conclusion of Theorem 2.1.9 also holds for convergent maps, i.e. with
F(M, M') replaced by F(M, M’) in (2.1.10). In this case, (2.1.10) is a
homeomorphism onto its image. This is the content of Theorem 4, which
will be proved in Sect. 4.3.

Let us consider the case N = N: and M = M’, where M is of finite
type at 0. By Corollary 1.27, the set (M, M) consists of formal mappings
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H : (M,0) — (M,0) which are invertible. Thus, F(M, M) is a group
under composition.

For k > 1, we denote by G¥(C)o the group (under composition) of
invertible jets in J¥(CV, CV )y ¢), which is a complex Lie group. It follows
from the above that, for any k& > 1, the image of F(M, M) under 3k is
contained in G¥(CN)o c J¥(CV,CV) 0.

Theorem 2.1.12. Let M be a formal generic submanifold through 0 in CcwN
which is £y-nondegenerate and of finite type at 0. Then there exists an integer
kywithl < k) < d+ 1, where d denotes the codimension of M, such that

(2.1.13) jorbo : F(M, M) = GRréo(CN),

is an injective group homomorphism and its image is a totally real algebraic
Lie subgroup of G*1%(CN),.

If M is a real-analytic generic submanifold through 0 in CV, then, as
mentioned in the introduction, F(M, M) (which in view of Theorem 3
coincides with F(M, M))is usually called the stability group of M at 0, and
is denoted by Aut(M, 0). The group Aut(M, 0) has a natural (inductive limit)
topology corresponding to uniform convergence on compact neighborhoods
of 0. That is, a sequence {H;} C Aut(M, 0) converges to H € Aut(M, 0)
if there is a compact neighborhood of 0 to which all the H; extend and on
which the H; converge uniformly to H.

Theorem 2.1.14. Let M be a real-analytic generic submanifold through 0
in CV which is €y-nondegenerate and of finite type at 0. Then there exists
an integer ky with 1 < ki < d + 1, where d is the codimension of M, such
that

2.1.15) gkt ; Aur(M,0) = GRrb(CN),
(1]

is a continuous injective group homomorphism and its image is a totally
real algebraic Lie subgroup of G¥%(CN)o. Moreover, (2.1.15) is a home-
omorphism onto the image 75 (Aut(M, 0)).

For the proofs of the results above, we shall need several tools which will
be presented in Sect. 3 below. However, we first discuss briefly the necessity
of the conditions imposed on M and M’ in the results above.

2.2. Generic necessity of finite type and finite nondegeneracy in the
real-analytic case

In the theorems given in Sect. 2.1, a standing assumption is that M is of
finite type at 0 and that M’ is finitely nondegenerate at 0. In this section, we
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shall discuss to what extent these conditions are necessary for the results.
More precisely, we shall discuss failure of the conclusion in Theorem 2.1.1
(which is a consequence of the main result, Theorem 2.1.5).

The notion of finite nondegeneracy at a point p in a real-analytic, generic
submanifold M is intimately related to that of holomorphic nondegeneracy
as defined in the introduction. A connected, real-analytic, generic subman-
ifold M C CV of codimension d is holomorphically nondegencrate (at
some point or, equivalently, at all points) if and only there exists £(M),
0 < (M) < N — d, such that M is £(M)-nondegenerate outside a proper
real-analytic subvariety of M (see e.g. [BER1] or [BER4, Chapter XI]).
Also, it is easy to see that the set of points at which a real-analytic, generic
submanifold is not of finite type is a rcal-analytic subvariety of M (see also
[BER4, Sect. 1.5]). Thus, a connected, real-analytic, generic submanifold
M c CV of codimension d is cither (a) £-nondegenerate, for some £ with
0 < ¢ < N —d, and of finite type outside a proper real-analytic subvariety
of M, (b) holomorphically degenerate, or (c) of infinite type at every point
(but (b) and (c) are not mutually exclusive).

For a formal generic submanifold M C C¥, the notion of (formal)
holomorphic nondegeneracy can be defined as follows. We say that a formal
(1, 0) vector field is (formally) holomorphic if its coefficients are indepen-
dent of {. The formal generic submanifold M is said to be holomorphically
nondegenerate at 0 if there are no nontrivial (format) holomorphic vector
fields tangent to M. If M is a real-analytic generic submanifold, then it is
(formally) holomorphically nondegenerate at 0 as a formal submanifold if
and only if it is holomorphically nondegenerate at 0 as a real-analytic one
(i.e. in the sense defined in the introduction). Moreover, if M is a smooth
generic submanifold, then it is holomorphically nondegenerate at 0 (as a
formal submanifold) if and only there exists a sequence of points p; € M
tending to O such that M is finitely nondegencrate at each p;. The reader is
referred to {[BER4, Chapter XI] for these results.

The following result shows necessity of the hypotheses in Theorem 2.1.1.

Theorem 2.2.1. Let M C CV be a formal generic submanifold. Suppose
either of the following hold.

(i) M is holomorphically degenerate at 0.

(ii) M isweighted homogeneous, i.e. defined by the vanishing of weighted
homogeneous polynomials, and of infinite type at every point (as a
real-analytic submanifold).

Then for any integer K > 0 there exist local formal invertible mappings

HY, H? . (CV,0) — (CV,0)
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mapping M into itself such that
olel {1 olel {2
gza 0= za

but H' # H2. If M is real-analytic, then Hy and H» can be chosen to be
biholomorphic near 0.

(2.2.2) 0), V]e| <K,

In the real-analytic case, Theorem 2.2.1 was proved in [BER2]. The proof
of Theorem 2.2.1 in the general case is similar to that in the real-analytic
case and the modifications are left to the reader.

3. Tools for the proofs
3.1. The Segre mappings

We keep the notation introduced in the previous sections; e.g. M is a formal
generic submanifold of codimension d defined by the formal power series
p=(p1,...,pa). Recall that Z = (z,w), withz = (21,... ,2p) and w =
(wy,...,wq),and ¢ = (x, 7), withx = (x1,-.. , Xn) and = = (11,...74),
are normal coordinates for M at 0, so that M is defined by

(3.1.1) w; — Qilz,x,7), j=1,...,d,
where the Q; € C[[z, x, 7]] satisfy

(3.1.2) Q;(0,x,7) ~ Q;(2,0,7) ~ ;.
As mentioned in Sect. 1, M is also defined by

(3.1.3) - Q0 zw), j=1,...,d

Consider, for each integer k£ > 1, the formal mapping v* : (C**,0) —
(C¥, 0) defined as follows. For k = 25,

v (z,xY, ., 27 ) = (z,Q(z,xl,Q(xl,zl,
614 Q- Q0 #7QE.0)..))) ),
and, fork =25+ 1,
v2j+l(zaxla-- . szj—l’xjazj) = (ZaQ(Z,Xl, Q(Xlazla
3.15) Q.. ,Q(zj_l,xj,Q(xj,zj,O))...)))).

(In (3.1.4) and (3.1.5), 2" denotes (z],...,z}) and similarly x" denotes
(xI,---.xp) forr =1,...,3.) For k = 0, we set v° = (0,0). We shall
refer to the mapping v* as the kth Segre mapping of M.
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Proposition 3.1.6. For any defining series p € C[[Z,(]]¢ of M and any
k>0,

(3.1.7) p(v* (2 X! 2., R (0 2L L)) ~ .

Proof. For simplicity, we only consider the case where k = 23. It follows
from (3.1.4) and (3.1.5) that
(3.1.8)

Pz Xt LT ) ~ (2,Q2 09 (X - 2T X )

It suffices to show (3.1.7) for the defining series given by (3.1.1), for which
(3.1.7) is an immediate consequence of (3.1.8). This completes the proof.
a

The following characterization of finite type will be important. If v is
a formal mapping (C™,0) — (C',0), then we shall write Rk(v) to denote
the rank of the matrix (9v;/dz;),i = 1,...,L,j = 1,...m, in A, where
A denotes the field of fractions of C{[z1,... ,Zm]]. We shall also use the
notation rk(dv;/dz;) for this rank.

Theorem 3.1.9. Let M be a formal generic submanifold of CN through 0.
Then, the following are equivalent:

(i) M is of finite type at O;
(ii) There exists ky < d + 1 such that the rank Rk(vk) is N for k > k.

For the proof of Theorem 3.1.9, we shall need special coordinates for
a formal generic submanifold. These will be presented in Sect. 3.2 below.
The proof of Theorem 3.1.9 will be given in Sect. 3.3.

3.2. Formal canonical coordinates

Recall that D, denotes the C[[(Z, ¢]]-module generated by all the formal
(1,0) and (0,1) vector ficlds tangent to the formal generic submanifold
M of CV. We define the integers m;, . .. ,my, also called the Hérmander
numbers of M at 0, as follows. The number m; is the smallest integer for
which there exists a commutator C of vector fields in Dy of lengthm, ! such
that C(0) is not in the span of Dy (0) C TjC2V. We define the subspace
Ey C T)C?N to be the linear span of Dps(0) and the values at 0 of all
commutators of vector fields in Dys of length m,. We define [; by

(3.2.1) I, = dim E; — 2(N - d).

We define inductively the numbers m; < mg < ... < my and subspaces
Ey C E3 C ... C Ep = TJC?N as follows. The number mj. is the

! The length of a commutator is the number of vector fields in Das appearing; e.g., the
commutator [X, [Y, Z]], with X,Y, Z € Dy, has length 3.
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smallest integer for which there exists a commutator C of vector fields in
Djs of length myy; such that C(0) ¢ Ejx. The subspace Ey4; is then
defined as the span of F, and the values at 0 of all commutators of vector
fields in Dys of length my.;. We define

k
(3.2.2) lgyy = dim Epyy — dim By = dim By — 2(N —d) = > _ L.
i=1

It is clear that this process terminates after a finite number of steps. We
shall call the number {; the multiplicity of the Hérmander number m;. It is
also convenient to use the notation gy, . .. , u, for the Hérmander numbers
repeated according to their multiplicities, so that r = Z;-;l l;.

The following theorem will be used in the proof of Theorem 3.1.9.
Theorem 3.2.3. Let M be a formal generic submanifold of CV of codi-

mension d through 0. Let 2 < uy < ... < p, be the Hérmander num-
bers of M at O repeated according to their multiplicities. There exists a

formal change of coordinates Z = Z(z,w',w"), with z = (21,... ,2n),
w = (w),...,w)), w’ = (w],...,wJ_,), N =n+d, satisfying the fol-

lowing. The defining series p of M, after the formal change of coordinates
(Z,¢) = (Z(2,w',w"), Z(x, 7', 7)), satisfies
(3.2.4)
s i '; v/
plz, w, w”s X T’a T”) = a(z, w,w', x, 7, 7" (:;n _ 8/1((2’)§£’:;’:I)))
where a(z,w', w", x, 7', 7") is a d x d matrix of formal power series which
is invertible at 0, and Q' (z, x, 7', 7") and Q" (z,x, 7', 7") are of the form
(3.2.5)
Q;:(Z, X: T" T”) N'rllg + pk(zv X 7-1,1 ey Tllc—l) + Ak(z, X TI, T”)T” +
Rk(Z, X T’)
Qfl(z’ x, 1_!’ 7_") "VT” + B(z, X’ Tl., T”)T”,

where k = 1,...,r. Here, px(2,X,7{,... , Tx_,) is a weighted homoge-
neous polynomial of degree y, where z and x have weight one and TJ'~ has
weight pj for j = 1,...r, Ri(2,x,7') is a formal power series which is
O(ui + 1) (i.e. involving only terms which are weighted homogeneous of
degree at least pi + 1), Ax(2,x,7',7") and B(z,x, ™', 7") are matrices of
formal power series without constant terms. Moreover, we have

Q’(Z, 0’ T', 7,Il) ~ Q'(O, X T’, T") ~ T,,
Q"(z,0,7',7") ~ Q"(0, x, 7', 7") ~ 7".

The proof of Theorem 3.2.3 can be extracted from the proof of [BER4,
Theorem 4.5.1]. The reader should observe that M is of finite type at 0 if

and only if r = d. In this case, there are no w" variables in Theorem 3.2.3,
ie.w=w and r = 7' in (3.2.4-6).

(3.2.6)
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3.3. Proof of Theorem 3.1.9

In view of Theorem 3.2.3, we may assume that we have formal coordinates

= (z,w',w"), ( = (x,7',7"), as described in Theorem 3.2.3, such that
M is defined by w’ — Q'(z, x. 7', 7") and w" — Q" (z, x, 7', 7"), where Q'
and Q" satisfy (3.2.5) and (3.2.6). Let us write

(331) Ql(za Xs T’v T”) ~7'+ p(Z, X T,) + R(Z, X:Ts T”)t
where
(3.3.2) (2,27 = (P1(2,X)s -+« s Pr(2: X s oo+ 5 Toe1))

are weighted homogeneous polynomials as in Theorem 3.2.3 and R =
(Ry,-..R,) are the remainder terms of higher (weighted) homogeneity.
Consider the homogeneous generic submanifold M° of C# given by

(3.3.3) w =@ +p(z,2,9"), o' =a"

Obscerve that M9 has the same Hérmander numbers as M (with multiplicity).
For each fixed k, we denote, for simplicity of notation, the variables in the
space C*”, where the kth Segre mappings are defined, by (z,£), where
£ € C*=n_we denote by v*(z,£) the kth Segre mapping of M at 0 as
defined by (3.1.4) and (3.1.5), and by v§(2, £) the kth Segre mapping of the
formal generic submanifold associated to M? at 0. The jth component of
the mapping 'u(',‘ is a homogeneous polynomial (in the usual sense; i.e. all
components of z and £ have weight one) of degree u;, where u; denotes
the jth Hérmander number (with multiplicity) of M° (or M) at 0. The z
component of the mappings v*(z, £) and v (z, £) coincide, and are equal to
z. Moreover, the w'" components also coincide, and are equal to 0. Let us
separate the 2, ', and w" components of the mappings v* and v§ and write

(3-3-4) vk(zs &) = (z$9 (Z,f ’ ’ vo(z,ﬁ) = (zago(z)‘f)’o)a

where (g&);{z, €) is a homogeneous polynomial of degree ;. We have, for
i=1,...,r,

(3.3.5) 95(2,€) ~ (98)(2:€) + O + 1),

where O(v + 1) denotes a power series consisting only of terms of degrees
higher than v.

It follows from [BERT1, Proposition 2.4.1] (sce also [BER4, Proposmon
10.6.27]) that there exists k;, with 1 < &; < d+1, suchthat Rk(vo) =n+r
for k > k;. Observe that the determinant of an m X m matrix A of power
series, where the jth row of A is of the form f; = fJ‘? + O(d; + 1) for some

homogeneous polynomial fJ[-’ of degree dj, is of the form

(3.3.6) detA =det A + O(dy + ...+ dm + 1),
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where A? is the matrix withrows £, . .. f0. It follows from this observation
and (3.3.5) that Rk(v¥) > Rk(v5), and hence Rk(v*) > n +r for k > k.
On the other hand, by the form (3.3.4) of v*, we have Rk(v*) < n + r for
any k > 1. Thus,

(3.3.7) Rk(v*) =n+r, Vk2>k,

The equivalence of (i) and (ii) of Theorcn} 3.1.9 follows from the fact that A/
is of finite type at O if and only if r = d, i.eifandonlyif Rk(v*) = n+d = N,
fork> k. O

3.4. Basic identity for formal mappings

An important tool, in combination with the Segre mappings, in the proofs
of the theorems in Sect. 2.1 will be the basic identity which we shall present
in this section. We keep the notation established in the previous sections.
In what follows, M and M’ denote fixed formal generic submanifolds of
codimension d and d’ through the origin of CV and CV’, respectively.

We choose normal coordinates Z = (z,w), ( = (x,7) for M as in
Sect. 1, and, similarly, normal coordinates Z’ = (2/,w'), ¢’ = (x/,7’) for
M. There is an associated coordinate system on J! (CV, CV’ )o,0) = CK @,
where K (1) denotes the dimension of this jet space. We shall use a scaled
coordinate system whose coordinates we shall denote by

(3.4.1) A = (Azawss Brvws)1<jal+ 1Bl n1+6ISt -

For a formal mapping H : (CV,0) — (CV',0), write H(2, w) = (F(z, w),
G(z,w)), where F = (F,...,Fy)and G = (Gy,...Gg). In the scaled
coordinates (3.4.1) we have, for any non-negative integer [,

(3.4.2) o(H) = (Acawsts orud )1l +1<0

where

dlal+8l g ah+dig

a5 0.0),  pys = 5—2—5(0,0).

020 8wh 2w 8270w®

For each fixed {, we shall split, and reorder, the variables A in (3.4.1) as
follows

(3.4.3) Azawﬁ =

(3.4.4) A=(4,4"),
where
(3.4.5) A" = () 1gpmet »

and the components of A’ are the remaining variables in (3.4.1). We shall
denote the number of components of A’ by K/ = K ’(l) and that of A” by
K" = K"(l), so that J{(CN,CN') g0y = CX’ x CK”. We are now in a
position to state the basic identity.
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Theorem 3.4.6. Let M and M’ be formal generic submanifolds through
the origin in CN and CN', respectively. Assume that M’ is £o-nondegenerate
at 0, and that n > n', wheren = N —d, n' = N' —d', d = codim M,
and d' = codim M. Then for eachj= (J1,... s ju) Withl1 < j1 < ... <
Jn < n, and for every a € ZY, there exists a formal power series mapping
of the form

dgsx(A’)

28 A,
(det (M, Drgtpgn)'s=

(34.7) ¥(Z,(, A~ Y
By7,6,5

where A = (A, A") € CK' x CX" with K' = K'(€p + |a|) and K" =
K"(€o + o), dgysu(A') are CN' valued polynomials in CX', and i,
nonnegative integers, satisfying the following. For every formal mapping
H € F(M, M') there exists 7 = (j1,. .. ,jn) such that

(3.4.8) det ( gF‘ (0)) #0
1<t,p<n’

and, for all o € Z¥,
(3.4.9)

O°H(Z) -] (Z,(,fI((), (333(0)1gw|ge0+|a|) ~a(Z,¢)p(Z,(),

where a{Z, C) is a d x d matrix of formal power seriesand p = (p1, . . . , pa)
is a defining series for M. Moreover, (3.4.9) holds for any H € F(M, M)
and any 7 such that (3.4.8) holds.

If M and M’ are real-analytic, then, for any j as above, o € Z_,A_' , and
any Ajy € CK'(&otlol) satisfying

{
(3.4.10) det ((f\o)z,-,,) 1<t p<n’

the series LD(J;(Z, ¢, (', A) given by (3.4.7) defines a holomorphic mapping
near the point (Z,¢,¢', A, A”) = (0, 0,0, Ag, 0).

Remark 3.4.11. The reader should observe that in substituting the for-
mal mapping (8°H (€)1<i8i<to+ial for 4 in (3.4.7), we replace A" by

(6,? G(x, T))1<|8|<to+|o| and A’ by the remaining derivatives. This substi-
tution of formal power series makes sense since, as remarked in Sect. 1,
G(z,0) ~ 0, and the dependence on A’ is rational. In what follows, we
shall, for fixed I, decompose, and reorder the components of (3°H(Z)) =
(BH(Z) <ot 25 (9PH(Z)Y, (8°H(Z)Y"), where (°H(Z))" =

(8? G(z, w)<si<t and (8P H(Z))' denotes the remaining derivatives.
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Proof of Theorem 3.4.6. Recall that, in the chosen normal coordinates, H
maps (M, 0) — (M’,0) if and only if (1.14) holds. The mapping H belongs
to F(M, M) if it also satisfies (1.19), which, as noted in the proof of
Corollary 1.27, is equivalent to 8F/8z(0,0) having rank n'. Thus, there
exists 7 as in the statement of the theorem such that (3.4.8) holds.

Let 3, as in the theorem, be given. We shall consider only those mappings
H : (M,0) - (M’,0) for which (3.4.8) holds. After renumbering the
variables if necessary, we may assume that 7 = (1,2,...,7n’).

We take as a basis for the (0, 1) vector fields tangent to M (modulo those
whose coefficients are in the ideal generated by a set of defining power series
of M)

d
J = a
3.4.12 Li=— (x,z,w)=—, j=1,...,n
In what follows, we shall only use the vector fields Ly, ... , L,,. We shall
also need the following vector ficlds tangent to M and given by
R d .
Lj= Dz: + ZQk,z_;(zaXa 7)'6—w_1 J=1..4n,
7 k=1 k
8 < d
3.4.13 T = — Ve.10- — i=1,...
( ) 2 awj + ; Qk,w, (X» Z, w) aTk’ J 1, 1ds

d
Vi=L; - ZQ"”‘J‘ (zyx, T)Tk, i=1,..,n.
k=1

Note that the I:j form a basis (modulo (p)) for the (1, 0) vector fields tangent
to M. Afterapplyingthe L;,forj = 1, ..., n’, to the second set of equations
in (1.14) |a| times, and applying Cramer’s rule after each application, we
obtain, for w = Q(z,x,7) or 7 = Q(x, z, w), any multi-index a, and
l=1,...,d,

Q= (F(x, 7), F(2,w), G(2,w)) =

Gald) 3 (LPGi00)Pas (E'F06 ipisial) /47171,
1<|6I< e

where A = A(2, w,x,7) = det{LjFe(X, T)]1<jk<n’» and P, g are univer-
sal polynomials, i.e. independent of M, M’, and H. Note that for any formal
power series h(x, 7) and any multi-index 3 we have LAh(0) = ,0h(0).
Thus, A(0) # 0 by (3.4.8). Also, L°G(0) = 0 by the normality of the
coordinates, as is easily verified from (1.14). Hence the right hand side of
(3.4.14) vanishes at the origin.
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By the assumptlon that M’ is £9-nondegenerate at 0, there exist n’ multi-
indices a',...,a", with 1 < |af| < &, and n' integers I1,... ,ly €

{1,...,d’} such that det [Q' vai s (0 )] # 0. (See [BERI1] or [BER4,
%k

Corollary 11.2.14].) Hence, by the implicit function theorem, there exists a
unique C" valued formal power series S(x’, 7/, ) withr = (ry,... ,Tn),
so that $(0,0,0) = 0and X = S(x'. 7', r) solves the system of equations

(3.4.15) Q;v SO X QXX T~ G=1,...,7.

For any positive integer k, we shall 1m.roduce the vector valued variables
(“‘Y)I_vlsk’ (bg) 81<k» Where 8,y € Z , corresponding to (L7 F(x, T))lyi<ko
(LPG(x, 7))|8|<k» Tespectively. Here ay = (aF)igmgw and b3 =

(%)ISJ'S“" We write (a'};n)ISk,mSn’ for (a:’yn)ISmSn', |yi=1- We define
(3.4.16)

<tal (05) P, 3
Ra (@ )1<istal (85 1<ipi<ial) = 1<i81<ial () Pass ((a4)1gpy1<ia1)

)2]0:[-1

(det(a)1<k,men’

Observe that R, is a universal rational function that vanishes when b}, =0,
[8] < ||, and whose denominator is a power of det(af')1 <k,m<ne - It follows
from the above that, for w = Q(z,x,7) or 7 = Q(x, 2, w), we have the
identity

(3417)  F(z,w) =8 ((L7F(x Mpiseer (L°C(x: Nigiseo)
where

O((ay)igeor (b8)i81<80) =
(34.18) S (ao, bo, (Rai ((a—/)nslvlslailv (bg)lgmgajl))lngn’) |

Now, since F(z, w) is a power series in (z, w) only, we have, for any multi-
index v = (', "),

! " VIP
(3.4.19) VYT F(z,w) = 8?"8 =7 (2, w).

By applying V¥'T*" to the identity (3.4.17), we obtain

M F

Eyrw (z,w) =6, ((V'SIT'S"L"F (X 7)) B1+yI< o+

(3.4.20)
(Vn T LﬁG(X? T))|n|+[ﬁ|550+|”|) ?
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where we have used the notation § = (&', 8”) and k = (', ”). The identity
(3.4.20) holds when w = Q(z,x,7) or 7 = Q(x, 2, w). Observe that the
power series ©, depends only on © and its derivatives.

By substituting (3.4.12) and (3.4.13) in (3.4.20), we obtain for w =
Q(z,x,7)or 7 = Q(x, 2, w),

o F
oou” Y = _ )

(34.21) &, (z,w,x, 7, F(x,7),G(x, 7), (8°H(x, 7))\, (8*H(x,7))").

where (0°H(x, 7)) = (8°H(X,7))jal<to+v| and we use the notation
(0*H(x,7)) = ((*H(x,7)),(8*H(x,7))") as explained in Remark
3.4.11. Observe that the power series &} depends only on M and M’, and
not on the mapping H. Using the notation

(3422) A= ((Ayars)igiol+iBistorivls (Bxrrs N<hri+sI<o+ o)

decomposing A, and reordering its components in an analogous fashion as
A = (A, A") with A" = (u,5)1<18<t0+(v|» it fOllows from (3.4.18) and
(3.4.20) that the power series

(3.423) ¢|l, (Z, W, X, T, X'a T,’ /il’ ‘/i”)
is of the form
(3.4.24) -
oL (z,w, x, 7 X T AL AY) ~ Z MZ‘BC’C&A—”K ,
v 525, der(3, o |

wherc egysx () are C*' valued polynomials and / g+éx NONNegative integers.
We have used here the fact that

- i
(3.4.25) Ros (@) ghigiort: (68 )iiprgian) =0,

when (b3)1<gi<jas] = 0. In view of (3.4.21) and (3.4.24), we can take the
first n’ components of ¥}(Z, ¢, ", A), with the fixed choice of j above, in
the conclusion of the theorem to be #}(z, w, x, 7, X', 7', A', A").

To complete the construction of 7, we need to find the components
corresponding to G and its derivatives. For this we substitute (3.4.21) with
v = 0 in the first set of equations in (1.14), and apply the vector ficlds V;
and T to the identity thus obtained, as above. We obtain

oG

(3.4.26) &2 (z,w, x, 7, F(x,7), G(x: 7), (0% H(x, 7)), (8%H (x, 7))")

w) =
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where (3°H(x,7)) = (0°H(X,T))jal<to+lv| and We usc the notation
(8°H(x,7)) = ((0*H(x, 1)), (0*H(x,7))") as above; (3.4.26) holds
for w = Q(z,x,7) or 7 = Q(x, 2z, w). We omit the details of this con-
struction, since it is similar to the one above for the component F'. Note,
by inspecting the construction above, that the function @] is defined only
in terms of the defining equations of M and M’, and does not depend on
the existence or choice of a mapping H. The proof of the formal part of the
theorem is complete.

Suppose that M and M’ are also real-analytic. Then the function S(x’, 7/,
r), defined by (3.4.15), is holomorphic in a neighborhood of the origin. The
fact, noted above, that each rational function R, ((a,), (bg)) vanishes when

(b) = 0 implies that the functions ¥4 (Z, ¢, ', A) above are holomorphic
in a neighborhood of (Z,¢,(’; A', A") = (0,0,0, Ay, 0) for any Aj; such
that (3.4.10) holds. This completes the proof of Theorem 3.4.6. O

Although Theorem 2.1.1 is aconsequence of Theorem 2.1.5, we conclude
this section by giving a direct proof of it.

Proof of Theorem 2.1.1. We take normal coordinates for A/ and M’ as
in the proof of Theorem 3.4.6. Let 7 = (ji,...,Jn’) be such that
det{(dF[™/02;,(0,0))1<1,p<ny # 0, for m = 1,2. By Proposition 3.1.6
and the basic identity, Theorem 3.4.6, it follows that

&°H(2) ~ ¥} (2,6, H(Q), (P H(O)hsipiseoiol)
(3.4.27) for Z = v**1(z, x4, 2%,...), ¢ = #*(x, 2Y .. ),

for any k > 0, where ' denotes the Segre mapping defined in §3.1 and
+° = (0,0). Hence, if for some ko one has j&¥0(H1) = j&ok° (H?), then it
follows from (3.4.27), for any k < kg, that

(3.4.28) (8°H') 0 v* ~ (8°H?) 0 v*, Ya : |a] < fo(ko — k),
as can be seen by an induction on k. In particular, we have
(3.4.29) (H' — H?) ok ~ 0.

By Theorem 3.1.9, there exists k;, with k) < d+ 1, such that Rk(v*) = N,
fork > k;.Itthen follows from standard facts about formal power series (see
e.g. [BER4, Proposition 5.3.5]) that (3.4.29) implies H LV H2if ko > k.
The proof of Theorem 2.1.1 is complete. O
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4. Proofs of the main results
4.1. Proof of Theorem 2.1.5

It suffices to prove Theorem 2.1.5 in normal coordinates. Thus, we take
normal coordinates for A/ and M’ as in previous sections. We also keep the
notation introduced in the beginning of §3.4 and in Remark 3.4.11. Consider
the linear mapping Dy, : C** — C2*" defined as follows. Fork = 25, > 1,
we set

ng(xl,zl,... ,zj_l,xj,zj) =
@11 Ox" 2. 27 P d, 2,
andfork=25—-1,7 > 1, weset

ng-l(xl,zl,... ,zj_l,xj) =

(4.1.2) (0,x" 2% ..., 277 ¥, 270 2 XY,

We remind the reader that v* denotes the kth Segre mapping as defined by
(3.1.4) and (3.1.5). We shall need the following.

Lemma 4.1.3. Forany k > 1, the following hold.

(4.1.4) v** o Dy ~ 0.
Fork=2§,j>1,
4.1.5) rk ( aav—jk o Dy, -;:J—z_: o Dy, ;:Tikl o Dy,
. %);; oDk) = Rk (v¥).
andfork =2j—1,5>1,
(4.1.6) tk ( 3;? o Dy, ?g o Dy, aa’fl " aa';ikl o Dy,
. é;i;:: o Dk) = Rk (v%)
In particular,
(4.1.7)
rk (a;jk o Dy, ‘Z"—T o Dy, %"iﬁ o Dy,..., ZL; o Dk) > Rk (v¥)
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Proof. Property (4.1.4) follows by making repeated use of the identities,

(4'1'8) Q(zv X Q(Xa z, w)) ~ W, Q(Xa 2, Q(Za Xs T)) ~T,

which are easily checked (see also [BER4, Remark 4.2.30]).
To prove (4.1.5) and (4.1.6), we first write

(4.1.9) iz xt, 2. )= (z, 4! (z,x}, 2 ..)),
where ¢! = (ul,... ,ufi). We also write (z,£®) for the variables (z, x?,
z1...) € C'. Observe, by the form of v given by (3.1.4) and (3.1.5), that

avf(z,€9)\ _ dul(z,€Y)

We shall complete the proof of Lemma 4.1.3 in the case where k = 27, and
leave the odd case to the reader. Thus, we shall prove (4.1.5). We have

@.1.11) v¥(z,x' 2. ,x¥) =
Q2% Qx, 25 ... QU 21, u¥ (2, 1., 271 ) .. ).

For fixed k = 25, we shall write £%%) = (¢, 27,€"), where £’ = (x', 2%,
o.yxT)yand €7 = (x3*, ¥, L x¥). We claim that

Su2k I, j’ 1" k j’ "
(4112) & ( - (Z’ai"z &) oDk> =k (%—)).

Since Di(€',27) = (0,€&, 27, €'), where & = (x7,291,... ,x}), (4.1.12)
follows from the chain rule, by using (4.1.11) and the fact that

oQ ) _
(4113) E(Ov 0, 0) = —3_1;(0’0,0) = Iyxd,

where I;.4 denotes the d x d identity matrix. (The identity (4.1.13) is a
consequence of (3.1.2).) The desired equality (4.1.5) is an easy consequence
of (4.1.12). This completes the proof of Lemma 4.1.3. O

We now return to the proof of Theorem 2.1.5. We fix j as in that theorem.
Let k; be the integer provided by Theorem 3.1.9. We shall use the notation
(2,€) for (z,x', z!,...) € C®*1" asin the proof of Lemma 4.1.3 above. We
claim that there exist rational functions ao((A')(?), ... , oo, —1((A)Za1~D),
where (A’)*) ¢ CK'(klo+1) with the following property. (In what follows,
we shall consider each o as a function of A’ € CK'(2k10) by letting it be in-
dependent of those components of A’ that correspond to jets of order higher
than k€o + 1 under the identification given at the beginning of Sect. 3.4.)
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There exists a C’ valued formal power series in (z, £), =7 (z,& A), of the
form
(4.1.14)

Sz 6 M)~y Bs(4)

l2k1—l lzkl -2 lo
78 02k, -1 (A') 8 ngl_z(/l’) s .o O'Q(A') 6

P

where d.(A') are C’ valued polynomials in CX'(2k160) and 1% s nonnegative
integers, satisfying the following. For every H € F(M, M’) satisfying
(3.4.8), we have

or((0%H(0))') = det(d

zJ.PFz(O)) I<tpene if K is cven,

(4.1.15) ox((8°H(0))') = det(8;,, F1(0)), ctpen if Kisodd,
and
(4.1.16) H(v*(2,€)) ~ =7 (2,€, (8°H(0))')

where (8°H(0)) = (0°H(0))1<jai<2k 6, and (32H(0)) = ((8*H(0))',
(0°H(0))") as explained in Remark 3.4.11. (Recall that G(z,0) ~ 0 so
that 82G(0,0) = 0 for all B, i.e. (3*H(0))"” = 0.) Indeed, the existence
of such functions 0%, 1 < & < 2k; — 1, and the formal power series
Z7 follows by making repeated use of (3.4.27) fork = 0,1,...,2k; — 1,
complex conjugating every other equation, and substituting inductively. The
rational functions oy appear naturally after each inductive substitution, and
the property (4.1.15) is an immediate consequence of their definition. The
form (4.1.14) of ST is a consequence of its construction and (3.4.7). The
details are tedious but straightforward, and left to the reader. It should be
noted that the rational functions in the right hand side of (4.1.14) depend on
J. but we have suppressed this dependence to simplify the notation.

In what follows, we shall assume that &; = 2j and leave the odd case
to the reader. As in the proof of Lemma 4.1.3, we write £ = (¢, 27, &%),
where &' = (x',2!,...,x%) and £ = (3+1, 2% ..., x%¥). In view of
Lemma 4.1.3, we can choose d components " = (y{,...,y) from the
components of £” such that

rk (3112"1 (&, zj, §”)
dy"

(o] Dkl) = d’

where u2*! is as defined in (4.1.9). After reordering the components of £
if necessary, we may write £ = (2", y"), with 2" = (z7,... ,xz’kl_l)n_d)

and y” as above. We define the linear isomorphism m : Ct1-1n
Ch1=1n g9 that

(4.1.17) Dy, (€,27) = (0,€, 27, m(¢")).
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Using the decomposition £# = (z”, y”'), the mapping m splits in the obvious
way asmm = (mgn, myr ). We shall need the following version of the implicit
function theorem with singularities.

Proposition 4.1.18. Let u(x,t,y) be a formal mapping (C™ x C"™ x
C¢,0) — (C,0) such that

(4.1.19) u(z,0,0) ~0, 1k (g—-:(a:, 0, 0)) =d.
Then the equation

(4.1.20) u(z, t,y) ~w,

has a unique solution of the form

(4.1.21) y = A(z) (:s ﬁ, A—E"z)—z) ,

where 0(t1, t2, t3) is a formal mapping (C™ x C™ x C%,0) — (C4,0) and

(4.1.22) Az) = det (—31;-(3:, 0, 0)) :

If, in addition, the mapping u is holomorphic in a neighborhood of the origin,
then the mapping 8 is also holomorphic in a neighborhood of the origin and
(4.1.21) solves the holomorphic equation u(z, t,y) = wfor (z,t,y, w) such
that A(z) # 0 and |t/A(z)?| + |w/A(z)?| sufficiently small.

Proof. It follows from the first condition in (4.1.19) that

(4.1.23) u(z, t,y) = a(z, t, )t + g(z, t,y)y,

where a(z,t,y) is a d x T, matrix of formal power series, g(z,t,y) is a
d x d matrix of formal power series. By expanding g(z,t,y) in t and y, we
obtain

(4.1.24) u(z,t,y) = g(x,0,0)y + (¥ Rj(z: t,9)y) ;<4 + @z 1, W)L,

where each R;(z, t, ) is a d x d matrix of formal power series and (. ¢, y)
is a d x T matrix of formal power series. Note that

(4.1.25) g{(z,0,0) ~ %(m, 0,0).

Using Cramer’s rule on the equation u(z,t,y) ~ w, we obtain, for some
d x d matrix b(z) of formal power series

(4.1.26) A(z)y+b(z) (y"‘R_-,- (z,t, y)y) 1<i<at b(z)a(z,t, y)t ~ b(z)w,
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or, after dividing by A(z)?,

4.1.27) ﬁ + b(z) ("A%Rj(m’ b y)ﬁ) 1<5<d ¥

b(z)a(zx,t, y)—A—éc)—2 ~ b(m)%xy

inC[z, t,y, w, 1/A(z)]]. Puty’ = y/A(z),t = t/A(z)?, v = w/A(z)?,
and consider the equation
@.127) ' +b(@) ()" Ry(z: @), AW W), ;cq +

b(z)a(z, A(z)%t', A(z)y' )t ~ b(zx)w'.

This has a unique formal mapping solution y’ = é(z, ¢/, w'), with
0:(C™ x C™ x C%0) - (C%0),

by the formal implicit function theorem. The conclusion of the proposition
in the formal case follows by substituting for 3/, ¢/, and w’'.

If u is holomorphic in a neighborhood of 0, then the C4-valued function
0(z,t', w') is also holomorphic in a neighborhood of 0, and it is straightfor-
ward to verify the last conclusion of Proposition 4.1.18. 0O

We return again to the proof of Theorem 2.1.5. We may apply Proposition
4.1.18 to the equation

(4.1.28) k(2,829 man(€),y") ~ w,
withz = (§',27), ¢t = z, and y = y" — myn(£’), since the conditions

in (4.1.19) are satisfied by Lemma 4.1.3. We conclude that the equation
(4.1.28) has a solution of the form

" _ r i < w
(4.1.29) y =9 (f 127 A(g,20)2" A€, 21)2) ’
where ¢ is a formal mapping (C(1+1)r+d () — (C4,0) and
' g auzkl ' )
(4.1.30) A(E',27) = det S (0,€,27,m(¢)).

Thus, we have
(4.1.31)

v2k1 (Za E’l zjvmx"(fl),(b (6'7 zja A(E’sz)z, A(f;lj)zj)2)) ~ (sz)'
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Substituting this in (4.1.15), we obtain
(4.132) H(z,w
where (9*H(0)) = (8*H(0))1<ja|<2k16, @nd (0H(0)) = ((8*H(0))',

(6*H(0))") as explained in Remark 4.1.11. Expanding (4.1.32) as a formal
power series in z and w, we obtain, using (4.1.14),

Rop(€', 2, (0°H(0))) ,
(4.1.33) H(z,w) ~ 25: Z(&" zj)2(|ﬂl+|ﬁ|) £ wﬁ,

where Rag(€', 27, A') is of the form

(4.1.34) Rap(€, 27, A') ~
Ropys (A')

tzkl—l t2k1—2 lo
78 Ook,—1(A) 0078 gop, _o(A')asvs .. og(A) =6

€)' (27)°,

for polynomials Ragys(4’) on CX "(2k180) and nonnegative integers o g5
we have suppressed the dependence on 7 above to simplify the notation.

We next construct a formal mapping $(Z, A) = (2, A), with Z =
(z,w) and A = (A', A”), as follows. First set

. Rap(€', 27, 4)
, , ap a,.B
(4.1.35) I'(z,w, 2", A') Z A(§' 29) 2(I0|+|ﬂ|)z o

Since A(€',27) # 0, we may choose (£/°, zjo) so that the formal power
series in ¢,

(4.1.36) A(t) = A(te®,t27°) 4 0.

We shall write
(4.1.37)

Flrow b A = 0 4,30 AN ~ Bapt4) a5
I'z,w,t,A)=I(z,wt,tz ') QZ;A(t)z(m]-t-lﬂl) !

where Rap(t, A') = Rag(tf’o, 2% A’ ) are power series in ¢ whose coef-
ficients are rational functions of A of the form appearing in (4.1.34). Let r
be the smallest integer such that 3= A(0) # 0. By division, we may write

(4.1.37) Rop(t, A') ~ Top(t, A)A(t)XIeHIB) o 762, A'),
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where T, 4(t, A') is a unique power series in ¢ whose coefficients are finite
linear combinations of the coefficients of Rag(t, A’), and 4g(t, A') is a
polynomial of degree at most 2(|a| + |3|)r — 1 in ¢t whose coefficients
coincide with the corresponding coefficients of Ryg(t, A’). We decompose

I as follows

(4.1.38)
, rag(t, A')
Dz, wt, A') ~ ZﬁTaﬁ(t A)z°w’ + Z A(2)at+10) * "
, n_a ﬂ Taﬁ(t A) (41 13
&(z,w, A') + Ztsaﬁ(t A)2w" + Z_z(|a|+|m)z v

a,3

where, on the second line, we have decomposed T, 5(t, A’') ~ Tp5(0, A’) +
tSap(t, A') and where

(4.1.39) B(z,w, A') =Y Tag(0, A')zw”
o,

We set &(z, w, A) := &(z, w, A') (so that $(z, w, A) is independent of A”).
We claim that $(z, w, A) is of the form (2.1.6). Indeed, this is easy to check
from the above and is left to the reader.

Observe that for each H € F(M, M’) with det(8F;/ 92,(0,0))1<t,p<n’
# 0 it follows from (4.1.15) that P¥(8*H(0)) # 0, where (9*H(0)) =
(0% H(0))1<|a|<2k, - We claim also that for such an H

(4.1.40) H(z,w) ~ &(z,w, (3*H(0))) ~ &(z,w, (8°H(0))"),

with (6°H(0)) = ((0°H(0))’,(8*H(0))") as in Remark 3.4.11. In view
of (4.1.33), (4.1.35), (4.1.37), and (4.1.38), we have

(4.1.41) H(z,w) - &(z,w, (8°H(0))) ~

o ' Tﬁﬁ(t$ (aaH(O))’) o
g; (tsa,,(t, (8*H(0))") + Y OLCED )z wP.

Note that each coefficient on the right hand side of (4.1.41) is a Laurent
series in £ without constant term. Since the left hand side is independent of
t, we conclude that each coefficient on the right hand side must be zero and,
hence, (4.1.40) holds.

Assume now that A and M’ are real-analytic. An inspection of the proof
above, using the fact that the functions ¥Z(Z, ¢, (', A) of Theorem 3.4.6
are holomorphic near every (Z,¢,¢’, A', A”) = (0,0, 0, Ag, 0) for each A}
satisfying (3.4.10), and the fact that $(Z, A) is independent of A”, shows
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that $(Z, A) is holomorphic near every (0, Ag) with Ag = (Af, A§) such
that Ag satisfies (3.4.10).

Now, the formal mapping $(Z, A) satisfies all the conclusions of Theo-
rem 2.1.5, with the polynomial P¥(A) defined as above, except that $(Z, A),
and also the polynomial P7(A), are functions of A € J?*1%(CN,CN')50),
and 2k, need not be < d + 1 (although k; < d + 1 as noted in Sect. 1.3).
We shall address this point, and complete the proof in the next section.

4.2. Conclusion of the proof of Theorem 2.1.5

To complete the proof of the theorem, we shall need the following proposi-
tion.

Proposition 4.2.1. Let F : (C!,0) = (C*,0) be a formal mapping of the
Jorm

(4.2.2) F(z) = (F(z) + O(k1 + 1), ... , FX(z) + O(kx + 1)),

where FJp(a:) is a homogeneous polynomial of degree xk; > 1 for j =
1,..., k. Assume that RK(F®) = k, where F® = (F?,... ,F?). Then, for
every a € Z'j_, there exists a linear form Py : C°Ulel) — C, where

k
(4.2.3) el = 3" s

i=1

and o(v) denotes the numberof B € Z!, with |B| < v, such that the following
holds. For every
(4.2.4)

9) ~ > gay® €Cllyrs--- uell, h(z) ~ D hpa” € Cllzr, ..., xil]
a g

such that

(4.2.5) g(F(z)) ~ h(=),

we have

(4.2.6) 9o = Pa((hp)ipi<al)s Ve € ZX.

Moreover, the coefficients of the linear form P, are rational functions of the
coefficients of F.
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Proof. We decompose g into weighted homogeneous terms,

(4.2.7) 9(v) ~ Y _g" (W),

v=0

where g¥ (y) is a weighted homogeneous polynomial of degree v with respect
to the weights (k1, ..., K¢), i.e.

(4.2.8) W)~ Y. gav”.

llall=v

We also decompose h(z) into standard homogeneous terms

(4.2.9) h(z) ~ Y r¥(z),

v=0

where h, (z) is a homogeneous polynomial of degree ». Composing g with
F and identifying terms of degree v in (4.2.5), we obtain

(4.2.8) g (Fo(z)) = h*(z) + ...,

where the dots signify terms involving g, for ||a|| < v. Consider the linear
mapping T, : Hf[y] = H, [z], where H[[y] denotes the space of weighted
(withrespectto x = (k1,... , K;)) homogeneous polynomials in y of degrce
v and H, [z] the space of homogeneous polynomials in = of degree v, defined
by

(4.2.9) T.(9.) = gy o F°.

The fact that Rk(F%(z)) = k implies that 7T, is injective for each v =
0,1,.... Hence, it has a left inverse L, : H, [z] — H5[y]. It follows that

(4.2.10) ¢’ =L,(h* +...).

Since, as mentioned above, the dots involve only g, with ||a]| < v, the proof
of Proposition 4.2.1 is easily completed by inductiononv. D

We now return again to the proof of Theorem 2.1.5. We shall keep 7 fixed
as in the previous section. Recall, from the proof of Theorem 3.1.9 in §3.3,
the notation v (z, !, .. . ) for the lowest order homogeneous terms (in each
component) of the Segre mapping v*(z, x!, . ..). Since M is of finite type
at 0, an inspection of the proof of Theorem 3.1.9 shows that there exists an
integer k; < d + 1 (also called k; in the proof of Theorem 3.1.9) such that
Rk (v(’f ) = N for k > k). In what follows, we shall assume that &, is even

(and leave the odd case to the reader), and let € = (!, z!,...) € Clki—Dn,
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The same argument used to obtain (4.1.16) shows that there exists a CV '
valued formal power series in (z, £), £7(z, €, A’) of the form
(4.2.11)

S(z64)~ D) 27’

lkl—l [k1—2 ‘0
1.6 Oky—1(A)8 opo(A)8 ... oo(AT)*

where d.s(A’) are CV " valued polynomials in CK'(k1fo), 156 nonnegative
integers, and the rational functions oy (A’) for0 < k < &y — 1 are the same
as those appearing in (4.1.14), satisfying the following.

For every H € F(M, M’) satisfying (3.4.8), we have

(4.2.12) H(v"(2,€)) ~ 7 (2,6, (3°H(0))') ,

where (3°H(0)) = (8°H(0)):i<jalsio and (°H(0)) = ((0°H(0),
(0°H(0)") as explmned in Remark 3.4.11. We shall apply Proposition 4.2.1
with z = (2,€), y = Z = (z,w), F(z) = v¥1(,€), 9(y) = H(Z), and
h(z) = Zi(z,€, (8°H(0))’). Since F® = v{* has rank N by definition of
ki, it follows that the hypotheses on F' in Proposition 4.2.1 is satisfied with

kj =1forj =1,...,n, and Kpy; = g5 for j = 1,...,d, where the
1 denote the Hérmander numbers with multlphcnty as deﬁned in §3.2. We
conclude, using (4.2.11), that for every 8 € Z , there is a linear form Pg
such that

(4.2.13) 8°H(0) =

P d‘y&(A’)
B8 F1-1 -2 nio
Ok =1 (A)28 op2(A)8 oa(A) ) s<ual

with A’ = (6*H(0)') as in (4.2.12) (in particular, |a| < k1£o). Now, let us
write A’ = (A’), where A, stands for the 3* H(0) part of the jet Jok‘“(H )
which appears in A’ (see Remark 3.4.11). By substituting

(4.2.14)

dys(AY) jaj<kre
r SK100
fo=P ( niy! N "9
Ok -1 (A)78 gAY oolA) ) L si<ia

for k1£g < |B] < 2k1£g in (4.1.39), we obtain the desired formal mapping
&7(Z, A) in Theorem 2.1.5. The polynomial PJ, is obtained, as before, as the
product of the numerators of the rational function o}, appearing in (4.1.14),
via the substitution given by (4.2.14). The fact that P3(8°H(0)) # 0, for
HeF (M, M') satisfying (3.4.8), follows from (4.1.15) and the observation

]

*
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that the substitution above does not change the values of o%(A) when A =
(0 H(0)) in view of (4.2.13).

In the case where M and M’ are real-analytic, we leave it to the reader
to check that substituting (4.2.14) in (4.1.39) (which in this case is holo-
morphic) yields a holomorphic mapping as described in the theorem. This
completes the proof of Theorem 2.1.5. O

4.3. Proofs of Theorems 4, 2.1.9,2.1.12, and 2.1.14

Proof of Theorem 2.1.9. Let ki, P, w5, &2, for 7 = (j1,... ,dn’) With
1 <7 < ... € jpr £ n, be given by Theorem 2.1.5. Then Ap €
J&(CN,CV' )0 is in the image of (2.1.10) if and only if
P3(Ap) # 0, for some 7, and

4.3.1) Ao = & (S, Ag)),
432 P (92, 40), T, &) ~ alZ,0p(Z,0),

for some d x d matrix a(Z, ) of formal power series, where p and p' are
defining power series for M and M’ respectively. In view of (2.1.6), the
equation (4.3.1) is a finite set of polynomial equations on Ag. Similarly, by
(2.1.6) and elementary linear algebra, (4.3.2) is an infinite set of polynomial
equations on Ag and Ag. Thus, the solutions Ag to (4.3.1) and (4.3.2) form a
(possibly empty) real-algebraic subvariety A; of J*1%(CV,CV ')(0,0), and
the image of (2.1.10) coincides with A \ B, where

(4.3.3) A=J4, B={Pi(4)=0}.
5 )

To see that the image is totally real at each regular point, we pick a regular
point Ag € Aj;\ B for some j. Thus, there is a unique mapping H® €
F(M, M') with j('fle“ {(HO) = Aq. By applying the basic identity Theorem
3.4.6, with Z = 0 and ¢ = 0, to the mapping H° and using (4.2.13) (cf.
[BER3, Lemma 3.7]), we deduce that there exists a rational mapping 7'(A),
holomorphic near Ay, such that

(4.3.4) A =T(A),

holds for each A € Aj;\ B near Ay. From this, it is easy to see that A; \ B
is totally real at Ag. This completes the proof of Theorem 2.1.9. 0O

Proof of Theorem 4. We shall prove Theorem 4 with (d + 1), replaced by
k1£y, where k) is as above. Clearly, this implies Theorem 4, since k; < d+1.
In view of the proof above and Theorem 3, it suffices to show that the
mapping (2.1.10) is a homeomorphisms onto A \ B, with A and B as in the
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proof of Theorem 2.1.9, when M and M’ are real-analytic. This is an easy
consequence of Theorem 2.1.5 and the details are left to the reader (see also
the proof of [BER3, Theorem 1]). O

Proofs of Theorems 2.1.12 and 2.1.14. The conclusions of these theorems
follow immediately from Theorems 2.1.9 and 4 (or, more precisely, the
version of Theorem 4 with (d + 1)¢p replaced by k; ¢y as proved above),
since a locally closed subgroup of a Lie group is a Lie subgroup (see e.g
[Va]). O

5. Smooth perturbations of formal generic submanifolds
S.1. Smooth families of submanifolds

In this section, we shall study the behavior of the series @7, given in Theorem
2.1.5, under smooth perturbations of the formal submanifolds M and M.
For this, we need the notion of a smooth family of formal generic subman-
ifolds which will be introduced below. A particularly important example,
discussed in detail in Sect. 5.2, is the family obtained by taking the formal
generic submanifold associated to a given smooth generic submanifold M
at varying points p € M.

Let p(Z! C;.’E) = (pl(Za C;.’B), s apd(Z: C;SC)), where Z = (le (AR
Zn)and ¢ = (C1,-... ,{n), be a smooth family of formal defining series,
i.e. each p; is a formal power series in Z and { whose coefficients are smooth
functions of z for x in some smooth manifold X and, for each fixedz € X,
p(+, ;) is a defining series of a formal generic submanifold, denoted by
M, as explained in Sect. 1. The collection {M_}, z € X, will be referred
to as a smooth family of formal generic submanifolds through 0 in CN.IfX
is a real-analytic manifold and the coefficients of p depend real-analytically
on z, then we say that the family is real-analytic. We have the following
result.

Theorem 5.1.1. Let {M.}, z € X, and {M,}, y € Y, be smooth families
of formal generic submanifolds of codimension d and d' through 0 in cN
and CV', respectively. Assume that M, for To € X, is of finite type at
0, that M, , for yo E Y, is £o-nondegenerate for some nonnegative integer
&, and that n>n', wheren = N—dandn' = N' — d'. Then there
exist open neighborhoods U C X and V C Y of zo and yo respectively,
an integer ky with 1 < ky < d + 1, such that for each j = (j1,. .. s In?)
withl < j1 < ... < juw < n, there exists a polynomial Pi(-;z,y) on
Jhbo(CN CN ')(0,0) whose coefficients depend smoothlyon z,y € U x V
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and a formal power series in Z = (Z\,... ,Zn),
; A;
(5.1.2) I(Z, Az, y) ~ Z G(Aizy) ,
aj>0 P (A z, y y)la

where cz,(-; x,y) are CN'-valued polynomials on J¥1&(CV, CA")(O,O)
whose coefficients depend smoothlyonz,y € U x V and l}, are nonnegative
integers, with the following property. For every formal CR submersive map-
ping H : (Mz,0) — (M,,0), withz,y € U x V, there exists ] as above
such that PI(j§0(HY;z,y) # 0 if ky is even, PI(jG°(H)iz,y) # 0 if
k, is odd, and

H(Z) ~ &(Z, 3510 (H); z,y), if k; is even,
(5.1.3) il ke
H(Z) ~ & (z, Yz, y) . if ky is odd.

In addition, if M, and M., for some z,y € U x V, are real-analytic,

then for every j as above and Ao with P(7;(j, k1601 (Ao)iz,y);z,y) # 0
the series (5.1.3) converges uniformly for (Z, A) near (0, Ag) in CN x
JRlo(CN,CN') 0 ,0)- If the families {My}, z € U, and {My},y€Y, are
real-analytic, then the dependence of P(; z, y), 75(*; 2, ), and cl, (52,9)
above on z,y € U x V is real-analytic forx,y € U x V.

Proof. For the proof of Theorem 5.1.1, we shall need the following version
of the formal implicit function theorem in which the dependence of the
coefficients in the solution on the coefficients in the equation is described.
The proof, which consists of applying the usual (formal) implicit function
theorem and identifying coefficients in the equation, is left to the reader.

Lemma 5.1.4. Let k and m be nonnegative integers. Then there exist poly-
nomials P, for v € ZE, with the following property. For every formal
power series mapping F : (C* x C™,0) — (C™,0),

(5.1.5) F(z,y) ~ ) aasz°y’

withx = (z1,...,2) and y = (Y1,... ,Ym), Such that 9F/9y(0,0) is
invertible, there is a unique power series solution y = f(x) of the equation
F(z,y) ~ 0, where f : (C*,0) = (C™,0) is of the form

(5.1.6) fl@)~> by
Y
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with

Py ((@ap)ia
G17) by =l Coodolpiz)
det((ak)lsj,kSm) Il

Vv € fo_,

where afc = 0F};/0yx(0,0).

We return to the proof of Theorem 5.1.1. A consequence of Lemma 5.1.4
(and the construction of normal coordinates; see [CM], [BJT], or [BER4,
ChapterIV.2]) is that given a smooth family {M: },z € X, of formal generic
submanifolds through 0 in CV and zo € X, there is a formal change to
normal coordinates (2(Z; z), w(Z; z)) whose coefficients depend smoothly
on z € X near xg such that M,, in these coordinates, is defined by w —
Q(z,x, T; ), where Q(z, x, 7;z) is a d-vector of formal power series in
(2, x, T) satisfying (1.12) and whose coefficients depend smoothlyonz € X
near zg. Now, Theorem 5.1.1 follows by a detailed inspection of the proof
of Theorem 2.1.5 and repeated use of Lemma 5.1.4. The details are omitted.
a

It follows from Theorem 5.1.1 and the proof of Theorem 2.1.9 that, under
the assumptions of Theorem 5.1.1, the defining equations of the images

M (F(Ma, My)) € JbcV, V)

depend smoothly on (z,y) € X X Y near (zo, y0). Hence, by applying
{BER3, Lemma 5.1] (which essentially is the “no small subgroups” property
of Lie groups), we obtain in particular the following corollary of Theorem
5.1.1.

Theorem 5.1.8. Let {M,}, x € X, be a smooth family of formal generic
submanifolds of codimension d through 0 in CN. Assume that Mz, for
xg € X, is of finite type and €y-nondegenerate, for some nonnegative integer
£y, at 0. Let k) be the integer obtained by applying Theorem 2.1.12 to
M, and assume that the Lie group j*1% (F(Myy, My,)) C GR1E(CN )
is discrete. Then there is an open neighborhood U C X of x¢ such that the
Lie groups j*1¢(F(M,, M;)) C GF(CN)g, forz € U, arealso discrete.

Theorem 5.1.8 implies e.g. that if F(M,,, My,) consists of only the
identity, then for z € X near o there are no formal automorphisms “near
the identity” (in the sense of jets of order ko) in F( My, M_). If the family
{ M} consists of real-analytic submanifolds, then Theorem 5.1.9 (combined
with Theorems 3 and 2.1.14) yields the following result. If Aut(Mc,,0) is
discrete (in the natural topology), then Aut(M,, 0) is discrete forallz € X
near zo.
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5.2. Dependence on the base point in a smooth generic submanifold

We now tum to the particular example of a smooth family obtained by taking
the formal generic submanifolds associated to points p on a given smooth
generic submanifold M c C». More precisely, let M C C¥ be a smooth
generic submanifold with defining function p(Z, Z) near a distinguished
point po € M. We shall consider the smooth family {M,}, for p in a
neighborhood U of pg in M, of formal generic submanifolds through 0 in
CV defined by the Taylor series at 0 of the smooth defining functions

(5.2.1) p(Z,¢ip):=p(Z+p.C+p), pel.

For smooth generic submanifolds M € CV, M’ ¢ CV' and points p € M,
P’ € M', we denote by F(M, p; M, p') the set of formal mappings H :
(CN,p) = (CV',p’)such that Z — H(Z +p) - p' maps M, into M,
and is CR submersive. Here, a formal mapping H : (CV,p) - (CN',p') is
such that the components of H = (H,,... , Hyr) are formal power series
in Z — p with constant term H(p) equal to p’. We shall need some more
notation.

We denote by E(CY,CN')(z, 2y the set of germs at Z of holomorphic
mappings (C, Z) — (CV', Z') and by E(CV,CN') 7 the set of formal
mappings (CV, Z) — (CV', Z'). We denote by E(CN,CN') the disjoint
union

(5.2.2) Bch.c™y= ) ECN,cV)zz),
ZeCN,z'eCN!

and use similar notation for E(CY,CN’). We define F(M, MYy C

-

E(CN,CN'), for open subsets U ¢ M and U’ C M, 10 be

(5.2.3) FM M) ypy= |J FM,pM,p),
peUpel’

and F(M, M")(y,y») similarly. We equip E(CN,CN') 7, 7y with the natural
inductive limit topology, and E(CV,C¥') with the topology it inherits by
the trivialization

(5.2.4) E(CV,cV) =N x V' x E(CV,CV) o)

defined by taking a germ H at Zy with H(Zy) = Z{ to (2, Z}, Hp) €
CN x CV' x E(CN,CN')) , Where

(5.2.5) Ho(Z) = H(Z + Zo) - Z..
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For a positive integer k, we shall denote by J*(CV,C’) the complex
manifold of k-jets of holomorphic mappings CV — CV', i.e.

(5.2.6) JFeNeMy= ) RN,z
ZeCN , z7eCN’

where J*(CN,CV ')( z,2+) denotes the space of k-jets at Z of holomorphic
mappings taking Z to Z’. We have a similar trivialization

(5.2.7) JEECN,c¥y =N x N x JHCN, V)0,

and we have the jet mapping j* : E(CN,CN') — J*CV,CN'). (See
c.g. [GG] or [BER4, Chapter XIIJ; cf. also Sect. 2 above.) We shall use the
trivialization (5.2.7) andreferto (Z, Z’, A) € CN xCN' x J¥(CN,CN')(0,0)
as coordinates for J5(CN,CN').

We shall also use the notation J¥(CV,C¥')yyny € JH(CN,CN') for
the submanifold defined by

(5.2.8) FC,CMuom= U IS om
peU,p'el’

where U and U’ are open subsets of M and M’ respectively. Observe that
3% maps F(M, M")y,yr into JE(CN,CN)y 1.

We have the following corollary of Theorem 5.1.1, whose proof is similar
to those of Theorems 4 and 2.1.9, and is left to the reader.

Theorem 5.2.9. Let M and M’ be smooth generic submanifolds through
po € CN and ph) € CV " respectively, such that M is of finite type at po
and M’ is €y-nondegenerate at py, for some integer €o. Then there are open
neighborhoodsU C M andU’ C M’ of pg and pjy respectively, an integer k)
depending only on M with1 < k1 < d+1 where d denotes the codimension
of M, afinite collectionby (p,p’. A), . .. ,bi(p, p', A) of polynomialsin Aand
a countable collection {a;(p,p', A, A)}32, of polynomials in (A, A) whose
coefficients are smooth functions of (p,p’) € U x U’ with the following
property. The image of the mapping

(5.210) jklto H .7:.(‘“/1, M‘)(U’Ul) — Jk)fo (CN, CN')(U'UI)
coincides with the locally closed set

(5.2.11) ;

{aj(P,p',A,A) =0,j=12,...}\{bx(p,p,A) =0, k=1,2,...1}.
If, in addition, M and M’ are real-analytic, then the coefficients of aj(p, 7',
A, A) and by (p, p', A) depend real-analytically on (p,p') € U x U’, the sets
A= {a‘j(p!plvA:/i) = O, j = 1,2, v },

(52.12) B= {bk(p,P'y A) —_ 0, k= 1,2, e l}
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are real-analytic subvarieties of J*1%(CN,CN") ), and the mapping
(5210) (where ji'(M, ]WI)(U,U') = F(M, NI’)(U,U') by Theorem 3) isa
homeomorphism onto its image A\ B.

6. Remarks on the algebraic mapping problem

We shall conclude this paper by showing how the arguments presented here
can be applied to the algebraic mapping problem; see [BR], [BER1], [M],
[Z3], [CMS] for recent work. This problem consists, loosely speaking, of
finding conditions which imply that any holomorphic mapping H : CV —
CV’, defined near some point py € CV and mapping a given real-algebraic
submanifold M C C¥ with py € M into another M’ ¢ CV', is algebraic.
Recall that a holomorphic mapping is called algebraic if all its components
are algebraic functions, and a real submanifold is called real algebraic if it
is contained in a real algebraic subvariety of the same dimension (see also
[BER4, Chapter V1]).

Since this problem is not the main topic of the present paper, we shall
refer the reader to the papers mentioned above for a more detailed discussion
and history of the problem. We give here only the following new result.

Theorem 6.1. Let M C CV be a real algebraic, generic, and connected
submanifold which is of finite type at some point. Let M' C CN' be a real
algebraic, generic submanifold which is holomorphically nondegenerate
and of finite type at every point. Then any holomorphic mapping H : CN —
CV', whichis defined near some point p; € M, maps M into M’, and which
is CR submersive at some point p; € M, is algebraic.

Proof. Let H be aholomorphic mapping as in the theorem above. We denote
by 2 c CV a neighborhood of the point p; in which H is holomorphic.
It follows from the assumptions in the theorem that M N §2 is of finite
type outside a proper real-analytic subvariety. Since the restriction of H
to M N §2 is CR submersive outside a proper real-analytic subvariety, it
follows that there is a point p3 € M N §2 at which M is of finite type and
H is CR submersive. Moreover, since M’ is of finite type at H(p3) € M’,
it follows from Corollary 1.27 that H maps a neighborhood U C M of
p3 onto a neighborhood U’ C M’ of H(p3). We deduce, using [BERI,
Proposition 1.3.1] (see also [BER4, Theorem 11.5.1]) and the fact that M’
is holomorphically nondegenerate, that there is a point p; € U at which
M is of finite type, H is CR submersive, and for which M’ is finitely
nondegenerate at H(p4). Thus, Theorem 2.1.5 applies with pg = ps. Now,
an inspection of the proof of Theorem 2.1.5 shows that the functions &7
are algebraic when M and M’ are real algebraic, and hence it follows from
(2.1.8) that H is algebraic. O
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Remark 6.2. The crucial result used in the proof above, after applying Corol-
lary 1.27, is the following consequence of Theorem 2.1.5 (in the algebraic
setting): If M C CV is a real algebraic, generic submanifold which is of fi-
nite type atpg € M and M' ¢ CN "isareal algebraic, generic submanifold
which is finitely nondegenerate at pyy € M', then any holomorphic mapping
H : (CV,po) = (CN', p}) which maps M into M' and is CR submersive
at pg is algebraic. We should point out that this result also follows from [Z3,
Theorem 1.6). However, the approach in [Z3] differs from the one in this

paper.
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