A REMARK ON HYPOEILLIPTICITY OF HOMOGENEOUS IN Variant DIFFERENTIAL OPERATORS ON NILPOTENT LIE GROUPS

Linda Preiss Rothschild

Department of Mathematics
University of Wisconsin
Madison, Wisconsin 53706

In this note we use a recent result of Geller [2] to reformulate the criterion of Helffer-Nourrigat [3] for hypoellipticity of homogeneous left invariant differential operators on graded nilpotent Lie groups.

Let \(g \) be a graded nilpotent Lie algebra, i.e. \(g = g_1 + g_2 + \cdots + g_r \), a vector space direct sum, with \([g_i, g_j] \subseteq g_{i+j} \). Let \(G \) be its corresponding simply connected Lie group and \(U(g) \) its universal enveloping algebra, identified with the space of all left invariant differential operators on \(G \). Finally, let \(\hat{G} \) be the set of all irreducible unitary representations of \(G \).

The family of dilations \(\delta_s, s > 0 \), on \(g \) defined by \(\delta_s |g_1 = s^1 \) extends, via the exponential map, to dilations \(\delta_s \) which are automorphisms of \(G \). An operator \(L \in U(g) \) is
homogeneous of degree m if $L(f * \delta_s) = s^m(Lf) * \delta_s$, $s > 0$.

L is hypoelliptic if for any open $U \subset G$ and any distributions u, f on U, $Lu = f$ and $f \in C^\infty(U)$ imply $u \in C^\infty(U)$ also.

Helffer and Nourrigat [3] proved the following elegant characterization of hypoelliptic operators. (See also [1]).

Theorem A. (Helffer-Nourrigat [3]). Let g be a graded nilpotent Lie algebra and $L \in U(g)$ homogeneous of degree m.

Then L is hypoelliptic if and only if $\pi(L)$ is injective for all nontrivial $\pi \in \hat{G}$.

Recently Geller [2] proved the following (generalizing a special case of Koranyi and Stanton [4]).

Theorem B. (Geller [2]). Let g be a graded nilpotent Lie algebra and $L \in U(g)$ homogeneous and hypoelliptic. Then any function f on G which is of polynomial growth and annihilated by L is a polynomial.

From Theorems A and B we may obtain the following criterion for hypoellipticity.

Theorem C. Let g be a graded nilpotent Lie algebra and $L \in U(g)$ homogeneous. Then L is hypoelliptic if and only if there is no nonconstant bounded function h on G such that $Lh = 0$.

Proof. One implication is a special case of Geller's theorem cited above. Hence it suffices to prove that if there
is no nonconstant h with $Lh = 0$, then L is hypoelliptic. By the Helffer-Nourrigat criterion (Theorem A) it suffices to show that there is no nontrivial $\pi \in \hat{G}$ for which $\pi(L)$ is not injective. Suppose such a π were to exist with

$$\pi(L)v = 0, \ 0 \neq v \in H^\pi,$$

where H^π is the Hilbert space on which π is realized. Then, as in [6, Lemma 4.6] and [5, Theorem 8.1] we may construct h as follows. For any $s > 0$ let $\pi_s \in \hat{G}$ be defined by

$$\pi_s(g) = \pi(5_sg), \ g \in G.$$ By homogeneity of L, $\pi_s(L)v = 0$ for all s. Then if h is defined by

$$h(g) = \int_{-\infty}^{\infty} \pi_s(g)v, v > s^N ds,$$

for N sufficiently large, one may easily check that h is bounded, non constant, and $Lh = 0$. This proves Theorem C.

It would be interesting to find a proof of Theorem C not using representation theory.

REFERENCES

de Lie nilpotent gradé", Comm. P.D.E. 4, no. 8 (1979)
899-958.

complex hypoelliptic operators" (preprint).

operators constructed from vector fields", Comm. P.D.E. 4
(6), (1979) 645-699.

operators and nilpotent groups" Acta Math 137 (1976)
247-320.

Received July 1983