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Remarks on the Generic Rank of a CR Mapping

By M. S. Baouendi and Linda Preiss Rothschild

ABSTRACT. We study germs of smooth CR mappings between embedded real hypersurfaces in complex
spaces of the same dimension. In particular, we are interested in the generic rank of such mappings.
IfH : M — M’ isaCR map between two hypersurfaces M and M’, we prove that if A’ does

" not contain any germ of a holomorphic manifold then either H is constant or the generic rank of H
is odd. We also prove that if there is no formal holomorphic vector field tangent to M, then either &
is constant or generically H is a local diffeomorphism. It follows, as a special case, that if M and
M’ are of D-finite type (in the sense of D’Angelo) then H is either constant or is generically a local
diffeomorphism.

Introduction and statement of results

Let M and M’ be two smooth hypersurfaces in C"*+' and H a germ of a CR mapping from
M into M’ at a point py € M. If M is minimal at Po. i.e., M contains no germ through p,
of a complex holomorphic hypersurface, then by a result of Trépreau [8) the mapping H extends
holomorphically to one side of M near py. If we regard H as a mapping from the real manifold
M into the real manifold M’, we denote by rk H'(p) the rank of this map at p € M. It follows
(see Section 1) that H is of maximal rank in a dense open subset of a neighborhood of pg in M.
We call this rank the generic rank of H. In particular, the generic rank of H is 2n + 1 if and
only if the Jacobian determinant of H at p, written Jac(H)(p), does not vanish identically in a
neighborhood of py. In this paper we give conditions on M and M’ that force the generic rank
to be odd, even, or equal to 2n + 1. We prove, in particular, (Corollary 0.4) that if M and M’
are of D-finite type, in the sense of D’Angelo (1], then H is either constant or its generic rank is
2n + 1.

We now state the main theorems of this paper. In all the following results, M and M are
assumed to be smooth hypersurfaces in C"*! and H a germ at p, of a smooth CR map from M
into M’.
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Theorem 1. If M is minimal at py and M’ does not contain any germ of a nontrivial

complex holomorphic manifold in a neighborhood of H (py), then either H is constant or the
generic rank of H is odd.

If M is a hypersurface in C**!, py € M, we say there is a formal holomorphic vector
field at po tangent to M if there exist n + 1 formal power series in n + 1 indeterminates
ai(Z),...,n41(Z), not all vanishing at 0, such that if p(Z, Z) is a real-valued smooth defining
function for M near py with nonzero differential, then

n+1 6 _ _ _
> ai(2) 57 (Z + 0, Z+Fy) = o(2,2)p(Z + 5o, Z + 7o) (0.1)
1 j

where ¢(Z, Z) is a formal power series in 27 + 2 indeterminates and equality holds in the sense
of Taylor series. (For more details, see Section 2.)

Theorem 2. If M is minimal at py and there is no formal holomorphic vector field at
any point in a neighborhood of pg tangent to M, then either the generic rank of H is even or is
2n+1,ie., Jac(H) #0.

The following is a consequence of Theorems 1 and 2.

Corollary 0.2. If M is minimal at py with no formal holomorphic vector field at any
point in a neighborhood of py tangent 1o M, and if M' does not contain any germ of a nontrivial
holomorphic manifold in a neighborhood of H(py), then either H is constant or Jac(H) # 0.

It is proved (Lemma 2.5 below) that all essentially finite hypersurfaces satisfy the assumptions
of Theorem 2. (See [4] or Section 2 for precise definitions.) Hence we obtain the following.

Theorem 3. If M is essentially finite at py and M’ does not contain any germ of a

nontrivial complex holomorphic manifold in a neighborhood of H(py), then either H is constant
or Jac(H) #£ 0.

Note that any hypersurface of D-finite type at pp is also essentially finite [2) and does
not contain holomorphic varieties through any point in a neighborhood of pp [1). Hence using
Theorem 3 in conjunction with the results of [3], we have:

Corollary 0.3. Let M and M’ be real analytic hypersurfaces in C**! and H a smooth
CR map from M into M'. If M is essentially finite at every point and M’ is of D-finite type at
every point, then there exists a dense open set U C M such that for every p € U, H extends
holomorphically in a neighborhood of p in C™+!.
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The authors do not know if, under the hypotheses of Corollary 0.3, the mapping H extends
holomorphically atzll points in M.

Another corollary of Theorem 3 is the following.

Corollary 0.4. If M and M’ are of D-finite type at py and H(py) respectively, then
either H is constant or Jac(H) # 0.

Further results relating the generic rank and the dimension of the possible complex manifolds
contained in M' as well as the dimension of the vector fields satisfying (0.1) can be found
in Section 4 (Theorems 1’ and 2'). In [7], Stanton considered hypersurfaces with no tangent
holomorphic vector field. It would be interesting to know how our formal condition introduced
in (0.1) is related to hers.

The present paper generalizes to the smooth case some aspects of previous work of the
authors [6] concemning holomorphic mappings of essentially finite real analytic hypersurfaces in
complex space.

1. Preliminaries: Proof of Theorem 1

Assume that near pg, M is given by p(Z, Z) = 0, where p is a smooth, real-valued function
vanishing at pp and with nonvanishing differential. If O is a sufficiently small neighborhood of
po in C™*!, we denote by Ot (resp. @) the open subset of O where p(Z,Z) > 0 (resp.
p(Z,Z) < 0). Since M is minimal at py, H extends holomorphically to one side of M, say
O*, if O is sufficiently small. We denote this extension by H, so that H : O — C™*! is
holomorphic and H € C®(U), where U = OF U (M N O). We denote M N O by Opr. We
shall always assume that O, O, Oy, and U are connected. For Z € U, we define tk¢H'(Z)
as the rank of the (n + 1) x (n + 1) complex Jacobian matrix ((0H;/0Z)(Z))1<jkgn+1s
where H = (Hy,..., Hns1). Hence for Z € Oy we have two ranks: tky H'(Z), the rank of
H considered as a map from the real manifold M to the real manifold M’ as in the Introduction,
and rkcH'(Z) introduced above. We have the following relation between these two:

Lemma 1.1. For Z € Oy, where O is as above, we have

keH' (Z) = [95”2—)“] ,

- (1.2)

where [k] denotes the greatest integer less than or equal to k. Furthermore, the maximal rank of
H is achieved on M, and if H has maximal rank at Zg € Oy, then H also has maximal rank
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at Zy as a mapping in U. More precisely, we have the inclusion
{Z € Our : tkaH'(Z) maximal in Oy} C {Z € Op = thcH'(Z) maximal in U} (1.3)

In addition, the open set defined by the left-hand side of (1.3) is dense in Q).

. Proof. For (1.2) it suffices to consider the question of ranks in the underlying real Euclidean
space R2"*2, where the fact that H is holomorphic implies that its real rank, rkeH'(Z), is even
and rkpH'(Z) = 2 tk¢H'(Z). After local smooth (not necessarily holomorphic) changes of
variables in the source and in the target, we can assume that M and M’ are the hyperplanes
z, = 0 and H is defined for ; > 0 near 0 with H = H|,;. Clearly, for all p € M, we have
thkar H'(p) < tkpH'(p) < rkar H'(p) + 1. Since kg ' (p) is even, (1.2) follows by considering
separately the cases where rkys H'(p) is odd and rky H'(p) is even.

For the rest of the lemma, we first observe that since  is holomorphic in O, which is
connected, {Z € O7 : tk¢H'(Z) maximal in O*} is given by the nonvanishing of a cofactor
of the Jacobian determinant of H'(Z). Hence the restriction of this holomorphic function to O
is nonvanishing in an open dense subset of Oyy. This shows that the maximum of rk¢H'(Z) for
Z € U is achieved on A, i.e., the set defined on the right-hand side of (1.3) is nonempty. Now
the inclusion (1.3) follows from (1.2). O

Let O be a fixed, sufficiently small open neighborhood of p, and r the maximal rank of H
in Oyy. For the proof of Theorem 1, we shall assume H is not constant, i.e., 7 > 0. By the last
part of Lemma 1.1, we may choose p; € Oy arbitrarily close to py such that rkys H'(p;) = 7.
We shall show that if T is even, i.e., 7 = 2k with k > 0, then M’ contains a k-dimensional
complex manifold through a point arbitrarily close to H(p,). We state the following elementary
lemma which shows that M can be extended smoothly to a full neighborhood of p, in C™*!
without increasing its rank. We leave the proof of the lemma to the reader.

Lemma 1.4. Let O be a neighborhood of 0 in RN, with x = (2,,...,Zx) denoting the
variable, and lee U = O N {zy > 0}. Let T : U — RY be a smooth map up to the boundary
and J be its restriction 1o U = O N {zn = 0}. Suppose that rkg J'(0) is maximal in U and
rkrJ'(0) is maximal in U. Then there exists 2, an open neighborhood of 0 in RY, and a smooth
map J : Q — R¥ whose restriction to U N Q coincides with J such that

tknJ'(p) = ko J'(0), forallp € Q. (1.5)

Let # be a smooth extension of  to a full neighborhood Q of p; in C**! with maximal
rank at p;. Such an extension is given by Lemma 1.4 after a local smooth (nonholomorphic)
flattening of M. Suppose, by contradiction, that the generic rank of H is 2k with £k > 0.
Note that, using (1.2), we have tkcH'(pi) = k and rkps H'(py) = 2k. Hence tkrH(p1) =
rkas H'(p ), which implies, again by the implicit function theorem after shrinking €2 if necessary,
that H(Q2) = H(QN M). Hence if V C QN O™ is open and arbitrarily close to py, then H(V')
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is a complex manifold contained in M’ arbitrarily close to H (p;), contradicting the hypothesis
on M'. This proves that the generic rank of H is odd, which completes the proof of Theorem 1.
O

2. Formal hypersurfaces and formal maps

The notation and results of this section are used in the proof of Theorems 2 and 3. We consider
formal power series p(Z, {) in 2n+2 indeterminates, Z = (2),...,2Z,), ¢ = (¢, ..., Cn), ie.,
p(Z,¢) € C[[Z,(]). We assume that p(Z, () is formally real, that is, if p(Z, () = > PapZo(P
then pog = Pgq, and that p(0,0) = 0, dp(0) # 0. If 5(Z, () is another such formal series,
we shall say that 5(Z, {) is equivalent to p(Z, () if there exists a formally real formal series
b(Z,¢) € C[[Z,]], with b(0) # 0, such that .

p(Z,¢) = b(Z,)p(Z, ). (2.1)

By a formal hypersurface M at the origin in C"*' we shall mean an equivalence class of such
formal power series. A representative in an equivalence class is called a formal defining function

for M.

Given 7 + 1 formal holomorphic power series, with no constant terms, in n + 1 in-
determinates Z = (Z,,...,Zn41) denoted Z(Z) = (2,(2),...,Zn41(Z)) and satisfying
det ((82;/02y)(0)) # 0, we write {(¢) = (1<), -, Casa(€)). with G;(C) = Z;(), where
Z;(C) is obtained from Z;(¢) by taking complex conjugates of the coefficients. We shall refer
to (Z(Z),¢(C)) as a formal holomorphic change of variables in C((Z,(]].

Let M be a formal hypersurface in C"*!, We shall call a choice of formal coordinates
Z =(2,,...,Zu4,) normal (for M) it there is a formal defining function p(Z, ¢) for M so _
that

P(Z,0) = j(Z)Zp4, (2.2)

for some j{Z) € C[[Z]] with j(0) # 0. The existence of normal coordinates can be proved by
the formal implicit function theorem. If Z = (Z,,..., Z,,) are normal coordinates for M, we
write 2 = (Zl,...zn). w= Zn-H’ n= (Clv--:(n)’ and 7 = Cn-H'

To say that there is a formal holomorphic vector field tangent to M means that there are

formal series a;(Z) € C[(Z]], j = 1,...n + 1, not all vanishing at 0 and k(Z, ¢) € C[[Z,¢])
such that

n+l
(Z aj(z)%) #Z,0) = K(Z,00(2,0). (23)
i=t i

Note that if the coordinates Z are normal for M, it follows from (2.2) and (2.3) by taking ¢ = 0
and Z,4) = O that necessarily @,4,(Z1,...,Z,,0) = 0. We obtain from (2.2) and (2.3) by
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taking w = 7 =0,

(Z a;(z,0) 5~ ) p(2,0,1,0) = k(2.0,7,0)0(z,0,7,0). (2.4)

Recall from [4] that if p(2,0,7,0) = ¥ pa(z)n°, then M is essentially finite if the ideal
Z = (pa(z)), generated by the p,(2), is of finite codimension in C[[2]).

Lemma 2.5. If there is a formal holomorphic vector field tangent 10 a formal hypersurface
M, then M is not essentially finite.

Proof. If such a formal vector field exists, so that (2.4) holds, we expand both sides
in 7) to conclude that 3°7_, @;(z,0)(8pa/02;)(z) € I, where Z is the ideal defined above.
By the assumed nonvanishing of one of the a; at 0 (and since @n+1(2,0) = 0, as remarked
above), we can find a formal holomorphic change of coordinates in the z; so that the vector
field 37, @;(2,0)(9/02;) becomes 8/0z,. Hence we may assume 8po/8z € I for all
multiindices a. This implies, since the p, generate Z, that T is closed under differentiation with
respect to 2, i.e., if u(z) € Z, then du/8z (z) € Z. We claim that this implies that Z is of
infinite codimension in C[[z]]. Indeed, if Z were of ﬁnite codimension, then by the Nullstellensatz
there would exist a positive integer N such that z{¥ € Z. Differentiating N times, we obtain
1 € Z, which is impossible, since it follows from (2.2) that p, (0) =0 for all , that is, Z is a
‘proper ideal in C[[2]]. O

A formal holomorphic map from C**! into C™+' isan 7 + 1 ple K = (K, ..., K, 1),
with K;(Z) € C([Z]]., K;(0) = 0. We shall say that K is of constant rank p if there exists a
P X p minor in the Jacobian matrix

(3K:‘(Z ))
0Zc Jigig

nonvanishing at 0 and such that all p’ X p’ minors vanish identically (as power series) for p’ > p.

This condition is invariant by formal holomorphic changes of variables in both the source and

the target. Using a formal implicit function theorem, the reader can check that if K is of constant

rank p then there exist formal holomorphic changes of variables (in both the source and target
spaces) such that in the new variables K(Z) = (Z,..., Z,,0,...,0).

We shall say that a formal mapping K from C™"*! into C™*' maps one formal hypersurface
M in C™*! to another formal hypersurface M’ in C™1! if

pI(K(Z)a I-((C)) = C(Z’ C)P(Z, C)a (2'6)

where p and p’ are formal defining functions for M and M’ respectively and K is the power
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series obtained from K by taking complex conjugates of the coefficients. Note that (2.6) is
independent of both the choice of defining functions and formal holomorphic coordinates.

3. Proof of Theorem 2

Let M, M’, and H satisfy the hypotheses of Theorem 2. We shall prove by contradiction
that if Jac H = 0 in a neighborhood of py and the generic rank of H in that neighborhood is
odd, say, 2r + 1, with 0 < r < n — 1, then in any neighborhood Uy of pg in M there is a formal
holomorphic vector field at some p € Up tangent to M. Given such a neighborhood U, let
1 € Up be such that rkys H'(p,) is maximal in Uy, where we have used the notation introduced
in Section 1. For simplicity we may assume p; = 0. We may choose an open set U C U, with
p1 € U, such that H is of constant rank, 2+ 1, in U. If O is a sufficiently small neighborhood
of 0 in C™*!, as in Section 1, we may assume that H extends holomorphicaily to O*; we may
also assume U = O N M. Writing U = O U U as before, we obtain from Lemma 1.1, after
shrinking O if necessary, that tkcH'(Z) = r+1 forall Z € U. By Lemma 1.4, we may extend
M smoothly to £, a full neighborhood of 0 in C**!, such that tkpH(p) = 2r +2 forall p € £,
where H denotes the smooth extension of H to (. By the implicit function theorem, H(M N Q)
is a manifold of codimension 1 in the (2r + 2)-dimensional manifold H(2). Let H(2) be given
near the origin by

{9;(2',Z"Y =0, j=1,...,2n=2r}, (3.1)

with ¢;(Z’, Z') smooth, real-valued functions with linearly independent differentials at 0. Then
H(M N Q) is defined near the origin by (3.1) and the vanishing of an additional real-valued
function

QZn—2r+l(Z’1 Z,) =0 (3'2)
with dq,...,dqp—2r4) linearly independent at 0.

We denote by K(Z) the Taylor series of H at 0, which is formally holomorphic. Let p
and p’ be smooth defining functions of M and M’, respectively, in a neighborhood of 0 in
C™*+!; we continue to denote by p(Z, Z) and p'(Z’, Z') their Taylor series at 0. These formal
series define formal hypersurfaces in the sense of Section 2, which we denote by M and M/’
respectively. The formal holomorphic mapping K(Z) maps M into M’ in the sense of (2.6).
Since H is of real constant rank 27 + 2 in 2, it is easy to check that the formal holomorphic
map K(Z) is of constant rank 7+ 1 as defined in Section 2. Hence there are formal holomorphic
changes of coordinates both in the source and the target, so that in the new formal coordinates we
have K(Z) = (Z,,...,2Z4,0,...,0). The Taylor series corresponding to (3.1) then becomes
Z;- =0,74+2 < j <n+1 and the Taylor series corresponding to (3.2) becomes

P(Zy.eer By Chreer Crat) =0, with dp"(0) # 0,

where p” is a formally real formal power series in 27 + 2 indeterminates vanishing at 0. Let
M?" be the formal hypersurface in C™*! defined by p". Since H(M) C M’, by composition of
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Taylor series we obtain that K maps M into M" in the sense of (2.6), i.e.,

p"(Zh-u’Zr+l7<h---aCr+l) = C(Za C)p(Z, C) (3'3)

Since p(0) = 0, the nonvanishing of dp”(0) implies C(0) # 0. Hence the left-hand side of
(3.3) is a formal defining function for A that is independent of Z,43,..., 2,4, so that the
formal holomorphic vector fields 8/82Z,,,,...,0/8Z,4, are all tangent to M, contradicting
the assumption on M. This completes the proof of Theorem 2. a

4. Remarks and further results

If M and M’ are smooth hypersurfaces in C"*! and H a germ at pp of a CR map from
M into M’ whose rank is constant in a small neighborhood U of pp in M, then it can be easily
shown that H(U) is a CR manifold in C**!. In addition, it follows from a slight modification
of Lemma (1.1) that the CR dimension of H(U) is [tkyr H'(p)/2] for p € U. The previous
remark, and an inspection of the proof of Theorem 1, yields the following generalization.

Theorem 1'. If the rank of H is constant in a neighborhood of po in M and M’ does
not contain any germ of a holomorphic manifold of complex dimension v > 0 through H(p,),
then the rank of H in that neighborhood is either odd or less than 2r.

To obtain a similar generalization for Theorem 2, we first note that the set of all formal
holomorphic vector fields at py tangent to M (i.e., those satisfying (0.1)) forms a Lie algebra.
Let d(pp) be its (complex) dimension at py. Note that we always have 0 < d(py) < 7. Then the
following result is obtained using the remarks above in conjunction with Theorem 6 in [5] and
an inspection of the proof of Theorem 2.

Theorem 2’. If the rank of H is constant in a neighborhood of po in M and d(p) < r,
then the rank of H in that neighborhood is either even or greater than 2(n — 1) + 1.

It should be noted that in Theorems 1’ and 2’ the hypersurface M is not assumed to be
minimal at pg.

Remark 4.1. In the case of C?, i.e., n = 1, Theorems 1 and 2 (or 1’ and 2') yield the
following: If M is minimal at py and M’ is minimal at every point in a neighborhood of H (p,),
then either H is constant or the generic rank of H is three. This conclusion fails if we assume:
only that M’ is minimal at H(po), as is shown by Example 4.2 below. [

Example 4.2. Let M be the Lewy hypersurface in C? given by Im w = |z|% Let
#(t) = e~"/% fort < 0and 0 otherwise, and M” the hypersurface in C2 given by Im w' = o(v'),
where 2’ = 2’ + 1y'. It is easy to check that M’ is minimal at 0, but not at any point where
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¥’ > 0. The holomorphic mapping H(z,w) = (w,0) restricted to M is a CR map from M
into M’ with generic rank equal to two.  [J

(1]
2)
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4]
(5]
(6]
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