SEMI-RIGID CR STRUCTURES
AND HOLOMORPHIC EXTENDABILITY

by

M.S. Baouendi
Purdue University

Linda Preiss Rothschild
University of California, San Diego

Let $\Omega \subset \mathbb{R}^{2n+\ell}$ be an open set, $0 \in \Omega$, and $\mathcal{T}\Omega$, the complexified tangent bundle to Ω. Let \mathcal{V} be a subbundle of $\mathcal{T}\Omega$ such $\dim_{\mathbb{C}} \mathcal{V}_\omega = n$, $\forall \omega \in \Omega$. We denote by \mathcal{L} the space of smooth sections of \mathcal{V} defined in Ω. We shall assume the Frobenius condition, i.e.

$$[\mathcal{V}, \mathcal{V}] \subset \mathcal{V},$$

and also

$$\mathcal{V}_\omega \cap \overline{\mathcal{V}}_\omega = \{0\}, \forall \omega \in \Omega.$$

With the above assumptions we say that Ω is equipped with an abstract CR structure of codimension ℓ.

If in addition for every $\omega_0 \in \Omega$, there exist an open set $\Omega' \subset \Omega$, $\omega_0 \in \Omega'$, and smooth functions in Ω', with independent differentials, $Z_1, \ldots, Z_{n+\ell}$, satisfying

$$L Z_j = 0, \ j = 1, \ldots, n+\ell, \ \forall L \in \mathcal{L},$$

we say that \mathcal{V} (or \mathcal{L}) is locally integrable. We denote by $\mathcal{M} \subset \mathbb{C}^{n+\ell}$ the image of Ω'. It is a (germ of a) generic CR manifold of codimension ℓ.

We shall say that \mathcal{V} is of finite type in Ω at ω (see Kohn [9] or Bloom-Graham [5] if for any $\xi \in T^*_{\omega} \Omega \setminus \{0\}$ there exists a commutator.
\(L^{(k)} = \{ L_1, L_2, \ldots, L_{k-1}, L_k \} \),
each \(L_j \in \mathcal{L} \otimes \mathcal{L} \), such that the symbol \(\sigma(L^{(k)}) \) satisfies

\[\sigma(L^{(k)})(\omega, \xi) \neq 0. \]

Let \(m(\omega, \xi) \) be the smallest integer \(k \) such that (2) is satisfied. The Hörmander numbers at \(\omega \) are the \(r \) distinct integers \(2 \leq m_1 < m_2 \ldots < m_r \) obtained as \(m(\omega, \xi) \) for some \(\xi \in T_{\omega}^* \Omega \setminus \{0\} \), \(\xi \) characteristic for \(\mathcal{L} \).

We shall say that a CR structure \(V \) of finite type is semi-rigid at \(\omega \) if for all \(\xi \in T_{\omega}^* \Omega \)

\[\sigma([L^{(k)}, L^{(p)}])(\omega, \xi) = 0 \]

for all commutators \(L^{(k)}, L^{(p)} \) of the form (1) with \(k, p \geq 2 \) and \(k + p \leq m(\omega, \xi) \).

The associated embedded generic CR manifold \(\mathcal{M} \) will also be said to be semi-rigid.

The following result gives local normal forms for such manifolds.

Theorem 1: Let \(\mathcal{M} \) be a generic CR manifold of codimension \(\ell \) in \(\mathbb{C}^{n+\ell} \).

If \(\mathcal{M} \) is of finite type at the origin, there are holomorphic coordinates around the origin, \((z, \omega) \in \mathbb{C}^{n+\ell} \) such that on \(\mathcal{M} \)

\[z_j = x_j + iy_j, \quad 1 \leq j \leq n, \]

\[w_k = s_k + i \left[p_{m_k} (z, \bar{z}, s_1, \ldots, s_{k-1}) + O(m_k + 1) \right], \quad 1 \leq k \leq r, \]

where \(p_{m_k} \) is homogeneous of weight \(m_k \) and \(O(m_k + 1) \) is of weight \(m_k + 1 \). Here the \(x, y \in \mathbb{R}^n \) are given weight 1, while \(s_j \in \mathbb{R}^{\ell_j} \) is given weight \(m_j \), and \(\ell_1 + \ldots + \ell_r = \ell \). Furthermore, the \(p_{m_k} \) may be chosen independent of all the \(s_j \) if and only if \(\mathcal{M} \) is semi-rigid.

The first statement of Theorem 1 is in Bloom-Graham [5]; our proof, as well as the proof of the second statement, uses methods of Helffer-Nourrigat [7].
The following are examples of semi-rigid CR manifolds:

1. Any hypersurface in \mathbb{C}^{n+1} of finite type.
2. Any generic CR manifold of finite type in \mathbb{C}^{n+2} with Hörmander's numbers $m_j \leq 3$, for all j.
3. Any generic CR manifold of finite type such that there exists $m \geq 2$ satisfying $m \leq m_j \leq m+1$ for all j.

A function h on M is said to be CR if it satisfies the equations

$$Lh = 0 \quad \text{for all } L \in \mathbb{L}.$$

We are concerned with the holomorphic extendability of CR functions across a point in M.

In order to state our main result we shall define the following sets of extendability. If a generic CR manifold in \mathbb{C}^{n+2} is defined by

$$\text{Im } w = \phi(z, \overline{z}, \text{Re } w), \quad z \in \mathbb{C}^n, \quad w \in \mathbb{C}^2,$$

$\phi(0) = 0$, $\phi'(0) = 0$, and if Γ is a strictly convex open cone in $\mathbb{R}^2 \setminus \{0\}$, a wedge with edge M is defined by

$$\Omega_\Gamma = \{ (z, w) \in 0 \subset \mathbb{C}^{n+2} : \text{Im } w - \phi(z, \overline{z}, \text{Re } w) \in \Gamma \},$$

where 0 is a neighborhood of 0.

Theorem 2. Let M be a semi-rigid CR manifold of finite type at the origin. Then any CR function on M extends holomorphically to a wedge of the form (5).

When the CR manifold M defined by (4) is real analytic, we have the following nonextendability result:

Theorem 3. Assume that M is a generic real analytic CR manifold in \mathbb{C}^{n+2} which is not of finite type at the origin. Then there exists a CR function defined near 0 on M which does not extend to any wedge.

Many extendability results have been proved since the classical work of H. Lewy [8]. Some recent ones are [3], [6], [4], [11]. A weaker version of Theorem 2 is proved in [2].

As in [2], the proof of Theorem 2 is based on the use of a generalized FBI transform (see Sjöstrand [10] and [11]) of the form

$$\int e^{i(w-s-\phi(z, \overline{z}, s))} - |\sigma| (w-s-\phi(z, \overline{z}, s))^2 \chi(s)h(x,y,s)\det(I+i\phi_s(z, \overline{z}, s))ds.$$

Details of proofs will appear elsewhere.
Références :

