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§ 1. Introduction

Let g=g,®...@g, be a nilpotent Lie algebra (over R) with [g;,9;]1<g,,;, and
let G=Expg be the corresponding simply connected group. We assume that g,
generates g, and we write g/= Z g, Let IL be a complex subspace of g,®C.

We shall say that IL is hypoelhpuc (respectively analytic-hypoelliptic) if the
following statement holds: for each open set Q =G and each ue2'(G),

Lue C*(Q)(resp. A(Q)) for every LelL=ue C*(Q)(resp. A(£2)).
In this paper, we shall give necessary and sufficient conditions for hy-
poellipticity and analytic hypoellipticity.
Our criteria use the following hypotheses on IL:
(H1) L+IL=g,®C;
(H2) for every Zeg3-(0) which vanishes on Re[IL,IL]+ Im[IL,IL],
the Hermitian form on IL x IL defined by

(LLY, =1 AL L)

has at least one negative eigenvalue.

Remarks. 1. In fact, {(L,L'), must also have at least one positive eigenvalue
(replace A by —4).

2. If Re[IL,IL] 4 Im[IL,IL]=g,, then (H2) is vacuous.

3. The form {, ), is the Levi form associated to IL; it is usually introduced
under the further hypothesis that [IL,IL]=(0).

Our main results are the following:
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Theorem 1. IL is hypoelliptice(H 1) and (H2) hold for L.

Theorem 2. Assume [g2%,¢*1=(0). Then IL is analytic-hypoelliptice=(H1) and
(H2) are satisfied for IL.

In the case r=2, these theorems are not new. The C* results follow from
more general work of Kohn [14] on the ¢ Neumann problem on the boundary
of a domain in €". The analyticity theorem for r=2 was proved by Métivier
[15], following earlier work (also on the § Neumann problem) by Treves [18]
and Tartakoff [17]. For r>2, the criterion of Helffer-Nourrigat [9] gives
necessary and sufficient conditions for C* hypoellipticity, but the conditions of
our Theorem 1 are simpler.

Sufficient conditions for analytic hypoellipticity for a system of vector fields
(not on a group) are given in Baouendi-Treves [3], Baouendi-Chang-Treves
[1], and Baouendi-Rothschild [2]. We use these criteria in our proof of
Theorem 2. We note that the idea of a criterion based mainly on the Levi
form, as well as some of the estimates of Theorem 1, appeared in Derridj [5]
(see also Grigis-Rothschild [7] and Helffer-Nourrigat [11]).

The proofs of necessity in Theorems | and 2 are more or less known; we
give details in §2. The proof of sufficiency depends on the following key
algebraic result:

(1.1) Proposition. If IL satisfies (H1) and (H2), then there exists a basis
L,,...,L, of IL such that

(12) % é [L,, L,JeRe[IL, L]+ Im[IL,IL].

This proposition will be proved in Sect. 6. Using it, we reduce the question of
C> hypoellipticity to simple L? estimates in the spirit of [5] (see [11]). We also
use Proposition 1.1 to reduce the question of analytic hypoellipticity to a case
where a criterion of [2] can be applied. For the case where [IL,IL] 40, we are
forced to consider a more general problem out of the group setting. Let
QcRM be open, let wye, let A(Q) denote the space of real analytic functions
on £, and let Z be a module of real analytic vector fields on Q. We assume
that & satisfies the following conditions near wg:

() [Z,&L)ce.
(i) £nZ=(0)
(ili) For every nonzero £eT} (), the cotangent space to Q lying over w,,
there is an iterated bracket

L=(L,,[L;,...[L;, ., Ly ). ]

with each L; e % + .2, such that the symbol L(ew,, §) is nonzero.

(iv) For nonzero EeTr(Q), let r(¢) be the smallest possible length of a
bracket satisfying (iii). Then for any commutators L®, L'" of & + & of lengths
l2| and |B| respectively, the symbol of [L'*™, L'®] at (w,,¢) is zero if |af
+1B1£r(€) and |a| and || are both =2. Conditions (i) and (ii) imply that &
defines a Cauchy-Riemann (or CR) structure, and condition (iii) is the usual
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microlocal “Hormander condition™; see [12]. Condition (iv) is a technical one
imposed in [2]; it corresponds to the assumption in Theorem 2 that [g?,q%]
=0. (We do not know if this condition is necessary for the conclusion.) We
prove Theorem 2 by reducing the problem to one where we can use a slight
variation of the following theorem, which seems interesting in its own right:

Theorem 3. Let & satisfy (i}-(iv) above, and suppose further that £ has a basis
L,,...,L, (for & as an A(Q2)-module) such that

Y [L,Lleg+ 2
Jmi

Then & is analytic hypoelliptic at w,.

§2. Proof of Theorem 1

To prove that (H1) and (H2) imply C* hypoellipticity, we use the basis {L;}
satisfying (1.2). Then we have complex numbers «;, such that

1 _
2.1) 7 _z’ (L,Lj]= Rekz;au[Lu L,).
j= »

For any ue C3(G) and any £>0,

(Lo Lytt, 1)) = \(Lyte, L) S| Louel) > + 6~ | Lyull 2
hence _ _
I(CLy, Ldu, w) S (I Leull + | Lyl >+ e~ (| Lol + | Lyull ),

and thus for any £¢>0 there is a C,>0 such that
22) I(Rezﬁu[h, Lju,u)l = Z ENLull® + CLull?).
j=1

But since L} = —I:j. we have the following identity:

Z I Ljul®= Z (LS Lju,u)

= Z (LyL%u,u)+ Z (CL5LJu,u)

j=1
2.2) = ¥ IL,ull? —i Re Y (e, [ Ly, LJu, 1),
j=1 k{0

Applying (2.1), we get

Z ILjul?2 Z N Ll — Z (€l Lyl * + C ALyl );

Jj=1 i=t
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hence (setting e=14),

(23) Y (Lul?+ILai)SC Y ILul?,  C'=3+2C,.
j=1 j=1
Now the hypoellipticity of IL follows from (2.3) and (H1), using standard
arguments (see, e.g., Kohn [14] or Hérmander [12]).
To show that (H!) and (H2) are necessary for hypoellipticity, we use the

Rockland criterion: if IL is hypoelliptic, then

(2.7 () Kern(L)=0
LeL

for all nontrivial neG*, where G* is the set of (equivalence classes of) unitary
representations of G. The proofs that this condition is necessary for hy-
poellipticity of a single left invariant differential operator on G (see 4, 16, 15,
8]) can all be adapted to systems; we sketch the procedure for one such proof.
Suppose that m and f are such that m(L)f =0, all LelL. For each dilation
x—=a({t)x (teR) of G, define the representation n, by n,(x)=mn(e,(x)). Then n,(L)f
=0, too. Now let u be any finite measure on (0, o0), and define a distribution
x(11) on G by

(x(), @)= g (@), f)d ().
Then for any LelL,

(L), @)=(x(p), L'(@))= i 7 L(@)f, f)du(m)

= (,E(“g(fp) ﬂ,(L)f; f)dﬂ(ﬂ)=0,

so that Lyx(x)=0. One can then choose u so that y(u)¢ C*(G); thus IL is not
hypoelliptic.

Clearly (H1) is equivalent to the injectivity of n(IL) when =40 is trivial on
g% It is not hard to check that (H2) is equivalent to the injectivity of n(L) for
all n trivial on (g>+Im[IL,IL]J+ Re[IL,IL]), but not trivial on g; the com-
putations are also given in [11] as Lemma V.2.2.7. Note that this proof also
shows that (H1) and (H2) are necessary for analytic hypoellipticity.

Remarks. 1. The condition (2.7) is also sufficient for C*-hypoellipticity for more
general systems of left invariant differential operators; see [11]. Here we show
that a weaker condition is sufficient for the hypoellipticity of IL, since (H1) and
(H2) say nothing directly about the injectivity of n(IL) if = is nontrivial on
Exp(g®+ Im([IL,IL]+ Re[IL,1L]).

§3. Proof of sufficiency :preliminaries
The proof of sufficiency for Theorem 2 involves three main steps. Let £ be the

Lie subalgebra of g®@C generated by IL. We first prove a “lifting” lemma
which lets us reduce to the case where £ n.Z=(0). For this reduction, how-



Smoothness and analyticity for solutions of first order systems 209

ever, we pay a price: we must work with systems defined on homogeneous
spaces. We then show that we can reduce to the case where the principal
homogeneous terms of the vector fields satisly the hypotheses of Theorem 3.
Finally, we prove a result which implies both Theorem 3 and Theorem 2. The
first step in this program is carried out in §4, and the last two in §5. Here we
collect some facts, proved in [2], which will be needed in the next two sections.
They come under two general headings: (A) homogeneity, and (B) the sector
property.

(A) Homogeneity. Let ¥ be an A($2)-module of real-analytic complex
vector fields satisfying (i)-(iv) of §1. As in [2] (see also [10]), we introduce
coordinates and a system of dilations. Let Z,,...,Z, be any basis of &, and
choose commutators of the ReZ;, ImZ;, which we denote by Sy (Sy has
length j) such that

(1) The fields ReZ;, ImZ,, §;, form a basis for the tangent space at w,;

(2) for each j,, any commutator of length <j, is a linear combination of
the vectors Re Z (w,), Im Z,(e,), and the S, (w,) with j<j, at w,.

We call the coordinate system

(3.1 (2, 5)>exp(}2,Z ) expls, S 1) g

the exponential coordinates induced by Z,,...,Z,. As in [2] (see also [16],
[10]), we introduce the dilations d,(z,s,)=(tz,#’s;); they induce a notion of
homogeneity for functions and vector fields on £ in which the Z, have weight
2 —1, the §;, have weight 2 —j and a homogeneous polynomial in the 2’s of
degree k has weight k. It is shown in [2] that in the induced exponential
coordinates we have

0 . <0pulz,2) 8
3.2 Z == — _— @,
3-2) ! az'j_HZ 0z; 6s,k+
where ¢,, is a homogeneous polynomial of degree { and @ is of weight 20.
(B) The Sector Property. Let p=p,_+p,_,+...+Dp, be a real-valued poly-

nomial on R?"=C", with p; homogeneous of degree j. Following [3], we say
that p has the sector property if

(3.3) there are pluriharmonic polynomials g, homogeneous of degree m, and
complex lines [, €" (j=1,2) such that

(3.3a) the restriction of p, +4q.}’ to I, is positive on a sector of angle >n/m;
and

(3.3b) the restriction of p,_,+4'' to I, is negative on a sector of angle > nt/m.

The following useful criterion for the sector property is an immediate
consequence of results in [3]:

Proposition A. Let p(z,Z)=p,,+...+p, be a real-valued polynomial on R3"=C".
Suppose that there exists a complex linear map f,: C—C" and a number 0, such
that
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(3.4) Bl f1500) =Pl £ (%), [,(™0) 4P, £y (€704 m), £, (101 =)

is positive. Then (3.3a) holds for p. If there exist f;, 0, such that p,(f3,0,)<0,
then (3.3b) holds for p.

Now let w,eQ. A system 2 of differential operators on Q with analytic
coefficients is said to be analytic-hypoelliptic at w, if for any u such that 2u is
analytic in a neighborhood U, of w, there exists a neighborhood U, of w, such
that « is real analytic in U,. In [2], the following criterion for analytic
hypoellipticity at a point is proved:

Theorem B. Let & satisfy (ifH{iv) of § 1, and suppose that Z,,...,Z form a basis
of &. Let the @ be as in the representation of the Z; in (3.2). Suppose that:

(3.6) Any (nontrivial) real linear combination Za,,‘ Relyp,,) satisfies the sector
property.

Then & is analytic-hypoelliptic at w,.

We shall sometimes write (3.6) as “. satisfies the sector property™.

§4. Reduction to a CR system

The two lemmas proved in this section accomplish the first step in the proof of
sufficiency in Theorem 2: reduction to the case where & N =(0).

(4.1) Lemma. Let g,IL be as in Section 1; suppose that I satisfies (H1) and
that IL has a basis L, ..., Ly such that

N N
42) 1Y ILyLl= ¥ ReaylL, L]
tjs1 jk=1
Jor appropriate complex constants a;. Then there exist a Lie algebra g'=g
OR* g =g, @g,®...Dg,, with g, =g,®R*) and complex vectors
Ly,...,Lyed ®C, such that if I is the span of L,,...,L,, and if n: G'>G is the
natural projection, then

(a) I’ NI =(0);
() (L;N)or=(L(fon)), all feC*(G) (i.e, L; restricted to Q is L);
(c) I’ satisfies (H1) and (4.2) on G'.

Proof. Let LnIL=M, let M1, ..., M} be a basis of M consisting of real vectors
(i.e., elements of g,), and let L},...,L} be a supplementary basis to M in IL.
Then the vectors Re L}, Im L} are linearly independent. Let G have the natural
homogencity determined by g. Then we may give G homogeneous coordinates
(x;), where x; is of homogeneous degree j, such that

il 0
+ Y d,(x
Z Jk( )ﬁxj,‘

0Xy 2541 f>1

Mi =

(1£j£K),
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and such that no term involving any appears in the expressions for

axl.ZJ-l-s
the Re L}, Im L. Now let G'=G xR, and define

Li=l, (1gjgJ), M’{'=M{+i% (1ZjZk).
i

It is easy to verify that (a), (b), (c) hold for IL".

(4.3) Lemma. Let g,IL satisfy the hypotheses of Lemma 4.1, and let & be the
Lie subalgebra of q®C generated by IL. Then there exist complex vector fields
L (1EjEN) on =G xR¥ {for appropriate R) such that if & is the Lie
algebra of vector fields generated by L,,...,Ly and if n: Q-G is the natural
projection, then

@) (L;N)en=Lfon);
(b) L =(0);

(c) there are dilations (determined by the exponential coordinates given by the
real and imaginary parts of L, ...,L,) such that

M:

[L,, L]=06(-1).
1

0

i

Proof. From Lemma 4.1, we may assume that ILAIL=(0), and we do so. Let
M=L L let M,,...,My be a basis of # consisting of real vector fields, with
M; homogeneous of degree m;<r. Let {S;} be a set of homogeneous elements
of g extending {ReL;, ImL,, M,,..., My} to a basis of g. In the corresponding
exponential coordinates, we may write

(4.4) Z Lz, Z') + Z bi(z, c'l
Lk

:
A

where s, corresponds to S,,, w, corresponds to M,, and z; corresponds to L,
Hence we may find ¢}, df such that

0 .
(4.5) Lﬁ&-""éd"(z’

6 Sik 'k
For any Zeg@C let Z be the vector field on € =G xR® obtained by

2
replacing each with W-H F ; let 2 be the lifting of #. Then .Z is again
k k

an algebra, and (a) and (b) evidently hold. We need only verify (c). We have,
from (4.5),

Im

Z&Lw. +zﬁmaﬂr
<j 0s; %

=Y
[

Hence, since M, =M,,

(4.6) L,=L;+Ydiz.2(M,—M,),
k
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so that

@7 !
i

‘. l -4 -3 -~ 3 - -
Z .L;] =7(z (L; Lj]‘*'zk(Ljdi)(Mk—Mk))
j i Jr
+(_Zd':; (L), M, —M,]).

We determine the homogeneity by giving degree —1 to the ReL], Im L,,
Re M,, Im M,, and to the real and imaginary parts of the commutators

[ 1 [le’ ") [LJ'k— l’L.ik]“‘]'

We need to show that each of the three sums on the right of (4.7) has degree
= —1. Since each M —M, has degree —1, the middle sum has degree = —1.

Furthermore, [L o M, .—M] has degree =-—2, and d_f:(0)=0 (since at 0,
L ’=6ii); thus each di(z,2) has degree =1, and the last sum has degree = —1.
i
That leaves the first sum,

N
Z LJ’ J] lZ[LJ’LJ]

j=1
= Z(Zk aull;, L] +Zk“,-k[£,-, L)
Js I

(4.8)

- —
-

from (4.2). The first sum on the right side of (4.8) is of degree —1, by
construction. As for the second sum, (4.6) and the above analysis give

(L, =1L, LA+ 0(-1)=[L, L1+6(-1),

where @(—1) is again a term of degree —1. Thus the second sum is also of
degree = —1, and the lemma follows.

Remarks. (a) I & is analytic-hypoelliptic at 0 in ', then % (hence IL) is
analytic-hypoelliptic at 0 in G, from (a). The left invariance of IL lets us
conclude that IL is analytic hypoelliptic on G.

(b) It is easy to see that the A(£2)-module generated by % has properties
(i)~(iv) of §1 (with w,=0).

§5. Analytic hypoellipticity for vector fields with a CR structure

The results of the previous section show that Theorem 2 is a consequence of
the following generalization of Theorem 3:

Theorem 3'. Let % be an A(Q2)-module of real analytic complex vector fields on
an open set Q<R which satisfies properties (i){(iv) of Section 1. Suppose
Surther that there is a basis L,,L,,...,L, of & such that
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N
(5.1) ,Zl [L;,L]=0(-1),

where O(—1) is of weight = —1 in the homogeneity determined by the L, Then
£ is analytic-hypoelliptic at w,.

Proof. We apply Theorem B (Section 3). Denote by L the homogeneous part
of L;. We have (see (3.2))

1_ i o OPuizn i_
5.2) Lf’az-,“Z 3z, sy

It follows immediately from (5.1) and homogeneity arguments that

(53) T L=o
Since

a2 -
(5.9) [L,[]=2iy 2w

02;0Z; dsy,

We conclude from (5.2) and (5.3) that each ¢, must be harmonic. More-
over, no nontrivial linear combination of the ¢, (for fixed I) is pluriharmonic.
Indeed, suppose otherwise. Then by a linear change of coordinates we may
assume some ¢, is pluriharmonic. Then it is easy to see that condition (iii)

of Section 1 is violated in the direction dual to

FR
In view of Theorem B, Theorem 3’ is proved once we show the following:

(5.5) Proposition. Let p(z,,%,,...,2,,Z,) be a homogeneous realvalued poly-
nomial which is harmonic but not pluriharmonic. Then p has the sector property.

Proof. We use the criterion of Proposition A (Section 3). Let p be homo-
geneous of degree m, and define p=p,, as in (3.4). For each weS2"~! (the unit
sphere in C"x=IR2"), let f,,: €—~C" be the complex linear map taking 1 to w. By
the mean value property for harmonic functions,

{ (S, )dew=2p(0)=0.

Sin-1

This shows that if p is ever positive, it is also negative, and conversely. Thus
either p has the sector property (by Proposition A) or p(f,,1)=0 for all w.
Since p(f,, 0)=p(/,,. 1) with o' =we'’,

(5.6) p(f,, =0 forall w,0.

Now let ¢ be a homogeneous polynomial of degree m on C=IR? such that
4(z,2)+q(ze'™™, e~'"™)=0 for all zeS'. On S', we may write q=gq(cos, sin0).
Then ¢ is periodic with period 2n/m, so that g is a function of cosm@ and
sinm@ of degree m in cos@, sin@. Thus
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g(cos 0, sin@)=a cosmd— Bsinm0=Re(ye™?), y=a+iB,
or q(z,Z)=Reyz"
We return to the function p satisfying (5.6). Let w=(w,,...,»,). Then the
above analysis shows that
(5.7 Pl 2,0,2,...,0,2,8,%,...,0,0) =3(7(0) 2" + @) Z™)

where y is a function. On the other hand, if

P2y Ty ZysennZ)= Y. Cup2* P,

lal+|Bl=m

then

(5.8) P2 0,2,@, 7,3, D)= Y C, g0*@* A,
{zl+iBl=m

Comparing (5.7) with (5.8), we see that C, ;=0 unless |x|=0 or |#]|=0. Hence
Y@ s @y By oy B)= Y, Cy o* + Co @&
a.p

and p is pluriharmonic.
This completes the proof of Proposition 5.6 and of Theorem 3'.

Proof of Theorem 3. The theorem follows once we note that the elements of &
and % have weight = —1.

Proof of Theorem 2. As shown in Section 4, we can lift & (on G) to & on 2,

where Z . =(0). Furthermore, if L,,...,Ly is a basis of IL, then the lifted
vector fields L, ..., Ly satisfy

i ,L1=6(-1).

59 %

Now complete L,,...,Ly to a basis L,,...,L, of & with L;eq,®C for
N <jZn, and lift to Ll .,L,. Because the condmon [a% a%]= Ollfts we have

[L,L]1=0 if N<j<n;
hence

*

1 -
(5.10) ; (L, L;}=06(-1).
j=1
Now Theorem 3’ implies that & is analytic hypoelliptic at 0. As remarked in
Section 4, this implies Theorem 2.

(5.11) Example. Let M be a hypersurface in €¥+! defined by
Imzy,,=®(z,3), zeC"

Suppose that @ is a homogeneous polynomial of degree r which is harmonic
but not pluriharmonic. Then Proposition 5.5 implies that the system of tangen-
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tial Cauchy-Riemann equations for M is analytic-hypoelliptic at 0. Hence (by
[31]) any CR function on M extends to a holomorphic function on C~ in a
neighborhood of the origin.

§6. Proof of Proposition (1.1)

Choose bases {L,,...,L,} and {Y,,..., Y, } for IL and g, respectively, such that
{Y,41:-.-» Y,,} forms a basis for Re[lL,IL]+Im[IL,IL]. Write

1 = =
(6.1) TEL},LR]=Zla;kYI
i=

and let A, be the nxn matrix (a,’.,‘), 1£j,k<n. The A, are Hermitian, and the
matrix for the Levi form {, ), with respect to the basis {L,,L,,...,L,} is

Y 2(Y) A, (we assume that A L(Re[IL,IL]+Im[IL,IL]). A change of basis for IL
=1

changes A4, to A;=TA,T*, where T is the matrix in GL(n, C) which implements
the change of basis. Since Proposition (1.1) evidently holds if the A (1 £!<m)

have trace zero, the following suffices to complete the proof.

(6.2) Lemma. Let of be a (real) linear subspace of the vector space H, of nxn
Hermitian matrices. Suppose that every non zero Aesf has a negative eigenvalue.
Then there exists TeGL(n, C) such that Tr(TAT*)=0 for all Aess.

Proof. Let &, be the set of positive definite matrices in H,, and denote the
standard inner product in H, by (T,,T,)=Tr(T,7;). Choose a basis
{A,,A,,....,A,} for & and define a linear map¢: H,—IR™ by

(6.3) @(B)=({4,,B),...,{A4,,B)).

Set S=¢(#). If the conclusion of the lemma is false, then for every
TeGL(n, €) there exists j such that 0% Tr(TA;T*)=(A;, T*T); this implies
easily that 0¢S. But &, is convex and ¢ is linear. Hence S is convex. Therefore
there is a hyperplane V such that S lies in one of the two (closed) half spaces
determined by V (see e.g. [6, Theorem 7). Equivalently, there exists a nonzero
v=(v, vs,..., 0, )€IR™ such that

(6.4) You;z0  for every u=(u,,u,,...,u,)eS.

Let A=) v;A,. Then (6.4) implies that

Je=1
(A, T»>z0 forall TeZ,
But the hypothesis implies that there is a unitary matrix U such that

U* AU =Diag(e,,...,&,) with ¢, <0.
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Let Ty=Diag(M,1,2,...,1) with M sufficiently large (n||A4|lle;!| will suffice).
Then

(A, UT,U*Y=(U* AU, T,> <0,

and UT,U*eZ,. This gives a contradiction, and the proof of the lemma is
complete.
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