SMOOTHNESS OF SOLUTIONS OF CERTAIN PARTIAL DIFFERENTIAL EQUATIONS CONSTRUCTED FROM VECTOR FIELDS

Linda Preiss Rothschild

ABSTRACT. Sufficient conditions are given for hypoellipticity of operators of the form

\[\sum_{k=1}^{d} a_{i_1 i_2 \ldots i_k} (x) x_{i_1} x_{i_2} \ldots x_{i_k} \]

where the \(x_{i_s} \) are smooth, real vector fields and each \(a_{i_1 i_2 \ldots i_k} \) is a smooth, complex valued function. Hypoellipticity of \(L \) is related to that of a corresponding left invariant operator on a nilpotent group.

1. INTRODUCTION AND MAIN RESULT. This is an announcement of new results on hypoellipticity of certain partial differential operators; details will be published elsewhere [9]. Suppose \(X_1, X_2, \ldots, X_p \) are real, smooth vector fields on a manifold \(M \) satisfying the following two conditions.

(1.1) The \(\{X_k\} \) together with their commutators up to some fixed length \(r \) span the tangent space at each point.

(1.2) For each \(j \leq r \) the dimension of the space spanned by the commutators of \(\{X_k\} \) of length \(< j \) is constant. The class of operators to be considered here consists of those of the form

\[L = \sum_{s \leq d} a_{i_1 i_2 \ldots i_s} (x) x_{i_1} x_{i_2} \ldots x_{i_s} \]

where the coefficients \(a_{i_1 i_2 \ldots i_s} \) are complex valued smooth functions.

The condition (1.1) was introduced by Hörmander [6], who proved that if \(\{X_k\} \) satisfies (1.1), then \(L = \sum_{j=1}^{n-1} x_j^2 + x_n \) is hypoelliptic. The additional condition (1.2) was given by Métivier [7], who showed that (1.1) and (1.2) guarantee an "approximation" of \(\{X_k\} \) by a set of vector fields generating a nilpotent Lie algebra. We review this construction.

\(^1\)Research supported by a grant from the National Science Foundation and an Alfred P. Sloan Fellowship.

©1979, American Mathematical Society
Let \(x_0 \) be fixed and choose vector fields \(X_{jk} \) \(j < r \) such that each \(X_{jk} \) is a commutator of length \(j \) of the \(\{ X_k \} \), and such that for each \(x \) near \(x_0 \) and each \(j_0 < r \) \(\{ X_{jk}(x) : j < j_0 \} \) is a basis for the subspace spanned by all commutators of length \(< j \), and \(X_{1k} = X_k \). Now introduce local coordinates for \(y \) varying near \(x \) as follows,

\[
\theta(x,y) = u = (u_{jk}) \text{ if } \exp_x \int u_{jk} X_{jk} = y,
\]

where \(\exp \) denotes the exponential mapping.

On \(\mathbb{R}^n \) with coordinates \(u = (u_{jk}) \) we introduce the family of dilations \(\delta_x, x, r > 0 \), defined by \(\delta_x(u_{jk}) = (r^ju_{jk}) \). A function \(f(u) \) is then homogeneous of degree \(s \) if \(f(\delta_x u) = r^sf(u) \). A vector field is homogeneous of degree \(t \) if it is a linear combination of terms of the form \(f(u) \frac{\partial}{\partial u_{jk}} \) with \(f \) homogeneous of degree \(s \) and \(t = j-s \); it is of local degree \(< t \) if its Taylor expansion is a sum of terms homogeneous of degrees \(< t \).

Now for any \(k \), let

\[
X_k, x = (d\theta)^s_x (X_k),
\]

the image of \(X_k \) under the differential of the mapping \(y \to \theta(x,y) \) at \(y = x \). Metivier has shown that

\[
(1.3) \quad X_k, x = \hat{X}_{k,x} + R_{k,x},
\]

with \(\hat{X}_{k,x} \) homogeneous of degree \(1 \) and \(R_{k,x} \) of local degree \(< 0 \).

Furthermore, \(\hat{X}_{k,x} \) generates a nilpotent Lie algebra \(\mathcal{U}^X_k \) of step \(r \). In face \(\mathcal{U}^X_k \) is stratified, i.e.

\[
\mathcal{U}^X_k = \mathcal{U}^1_k + \mathcal{U}^2_k + \ldots + \mathcal{U}^r_k,
\]

a linear direct sum, with \(\mathcal{U}^1_k, \mathcal{U}^2_k \subset \mathcal{U}^j_k \). We may also assume \(\hat{X}_{k,x} \) is a basis of \(\mathcal{U}^1_k \). Note that \(\mathcal{U}^X_k \) carries a family of dilations \(\delta_x \) which are automorphisms: \(\delta_x(Y) = r^jY \) for \(Y \in \mathcal{U}^j_k \). Homogeneity with respect to these dilations agrees with the previous definition.

THEOREM 1. Suppose \(\{ X_k \} \) are real smooth vector fields on a manifold \(M \) satisfying (1.1) and (1.2) near \(x_0 \) and

\[
L = \sum_{k \leq d} a_{i_1i_2\ldots i_k} (x) X_{i_1} X_{i_2} \ldots X_{i_k}. \quad \text{Then } L \text{ is hypoelliptic in a neighborhood of } x_0 \text{ if the homogeneous left invariant operator}
\]

\[
L_{x_0} = \sum_{k \leq d} a_{i_1i_2\ldots i_k}(x_0) \hat{X}_{i_1,x_0} \hat{X}_{i_2,x_0} \ldots \hat{X}_{i_k,x_0}
\]

is hypoelliptic.

For \(L_{x_0} \) the hypoellipticity criterion of Helffer–Nourrigat [4] may be applied: If \(D \) is a homogeneous left invariant differential operator on a nilpotent Lie group \(G \) then \(D \) is hypoelliptic if and only if for each irreducible unitary representation \(\pi \) of \(G \), \(\pi(D) \) is injective on \(S_\pi \), the space of \(C^\infty \) vectors for \(\pi \). This criterion was originally conjectured by Rockland [8].
Theorem 1 was conjectured by Helffer-Nourrigat [5], who showed that the given condition is also necessary in order that L satisfy the following estimates in a neighborhood U of x_0:

$$\sup_{s<d} \| X_1 X_2 \cdots X_s L^{-2}(U) u \|_{L^2(U)} \leq C(\| u \|_{L^2(U)} + \| u \|_{L^2(U)}).$$

2. PARAMETRICES. Theorem 1 is proved by constructing a parametrix for L following the methods of Polland-Stein [2] and Rothschild-Stein [10]. Let H^s denote the L^2 Sobolev spaces, $s \in \mathbb{R}$. Theorem 1 is a consequence of the following.

THEOREM 2. Suppose L satisfies the hypotheses of Theorem 1. Then there exists $\varphi \in C_0^\infty(M)$ such that $\varphi \equiv 1$ on a neighborhood of x_0, and operators K, S, with K bounded from H^s to $H^{s+d/d}$ and S given by a smooth kernel, such that

$$KLu = \varphi u + Su$$

for any compactly supported distribution u.

For the construction of K we need the following abstract existence theorem for fundamental solutions of differential operators on nilpotent Lie groups (see [1]). Let $Q = \frac{k}{2} \dim \psi_i$ if $\psi = \psi_1 + \psi_2 + \cdots + \psi_r$. If D is a hypoelliptic self-adjoint left invariant differential operator homogeneous of degree $d < Q$ on G, the simply connected group of ψ, then D has a left and right inverse. More precisely, there exists $k \in C^\infty(G(0))$, homogeneous of degree $-Q + d$ such that

$$D(fk) = Df k = f$$

for all compactly supported distributions f.

We may reduce to the case where F is self adjoint and $d < Q$ by replacing L by $L^* + \sum_{j=1}^{m} \frac{2d}{\delta_j} (\frac{1}{\delta_j})$ (see [5] for details). Now suppose, in addition, that F is hypoelliptic for all x sufficiently close to x_0. Then by the above L has a homogeneous fundamental solution k_x. Hence, as in [10, Theorem 10], a candidate for a first approximation for K is

$$K_1 : f \mapsto K_1 f(x) = \int \varphi_1(x) k_x(\Theta(y,x)) \varphi_2(y) f(y) dy,$$

where $\varphi_1, \varphi_2 \in C_0^\infty$, $\varphi_2 \equiv 1$ on $\text{supp} \varphi_1$.

3. EXISTENCE AND SMOOTHNESS OF $k_x(u)$. There are two main steps in the proof of Theorem 2.

STEP 1. Show that L_x is hypoelliptic for x close to x_0.

STEP 2. Show that $(x,u) \mapsto k_x(u)$ is smooth for $u \neq 0$, x close to x_0.
We shall indicate briefly the construction of k_x. Let K_x be the
operator defined initially on $C^0_0(G_x)$, where G_x is the simply connected
group corresponding to \mathcal{Y}_x, by

$$
(3.1) \quad k_x f = \lim_{n \to \infty} \sum_{j=0}^{n} (-1)^j (f \ast k_x^j)
$$

where

$$
k_x^0 = k_{x_0}, \quad \text{and} \quad k_x^j = (L_x - l_{x_0}) k_x^0 \ast x_0 \ast (L_x - l_{x_0}) k_x^0 \ast x \ast \cdots \ast (L_x - l_{x_0}) k_x^0 \ast x_0 \ast k_x^0.
$$

Here \ast_x denotes convolution over the varying group G_x; $K_x f$ is defined
only if the right hand side of (3.1) converges in L^p for some p,
$1 < p < \infty$. Then $K_x f$ is the distribution $K_x f = f \ast k_x^\infty$, if defined.

One must show first that K_x is defined if $f \in C^0_0$ and $|x - x_0|$ is
sufficiently small. Next, it must be shown that for fixed x,
$u \mapsto k_x(u)$ is smooth for $u \neq 0$ and on any compact subset the deriva-
tives are uniformly bounded in x. Finally, the analogous result for u
fixed, $u \neq 0$, must be proved for the mapping $x \mapsto k_x(u)$. Although more
complicated, most of this proof is in the spirit of that of [10, Theorem
3].

REFERENCES

[1] Folland, G. B., "Subelliptic estimates and functions spaces on
[2] --- and Stein, E. M., "Parametrices and estimates for the δ com-
plex on strongly pseudoconvex boundaries," Bull. Amer. Math. Soc. 80
Tom 83 (125), (1970), No. 3 (Math. USSR Sbornik 12, No. 3 (1970), 458-
475.)
hypoelliptiques homogenes invariants a gauche sur un groupe nilpotent
gradue," (preprint).
[6] Hörmander, L., "Hypoelliptic second-order differential equations,
[8] Rockland, C., "Hypoellipticity on the Heisenberg group: representa-
1-52.
[9] Rothschild, L. P., "A criterion for hypoellipticity of operators con-
structed from vector fields," (preprint).
[10] Rothschild, L. P. and Stein, E. M., "Hypoelliptic differential opera-

UNIVERSITY OF WISCONSIN, MADISON