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SOLVABILITY OF TRANSVERSALLY ELLIPTIC DIFFERENTIAL
OPERATORS ON NILPOTENT LIE GROUPS

By LAWRENCE Corwin' and Linpa PrEiss RoTHsCHILD?

1. Introduction. In this paper, we study some aspects of solvability
of left invariant differential operators on connected, simply connected
nilpotent Lie groups. In Part I, we prove a general necessary condition for
microlocal solvability and apply it to the case of a transversally elliptic op-
erator on a 2-step nilpotent Lie group. We show in Part II that for a special
class of 2-step groups, the criterion of Part I is also sufficicnt for local solv-
ability; the main argument here involves the division of distributions by
analytic functions. Finally, Part 111 is devoted primarily to a sufficient con-
dition for the existence of a global fundamental solution; this condition is
satisfied for the operators discussed in Part II.

We now describe these results in more detail. Let G be a (connected,
simply connected) 2-step nilpotent Lie group with Lie algebra g. Then g =
a1 @ g2 (a vector space direct sum) with g, = [g, g} = [g1, g1]. This grading
of g induces a grading of the universal enveloping algebra u(g), u(g) =
@0 u;(g). Thus a left invariant differential operator L € u(g) can be writ-
ten L = E% L;, with L; homogeneous of degree j. In the homogencous
case (L = L,,), criteria for local solvability of L have been given by the
authors individually ([21], [3], [4]) and severally ({S}), by Levy-Bruhl ([12],
[13], [14]), by Rothschild-Tartakoff ([24]), and by others; a survey of some
of these results is found in [18]. In Parts I and 11 of this paper, we use new
techniques to obtain results for non-homogeneous operators.

We say that L is transversally elliptic (or elliptic in the generating direc-
tions) if for every nontrivial 1-dimensional unitary representation ¢ of G.
o(L,,) # 0. (Note that ¢ = 0 on g,.) A differential operator P is locally
solvable at x; if there is a neighborhood U of xg such that the equation
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Pu = h has a solution 4 € €*(U) for each # € C2(U ). The main result of
Part I is the following:

THEOREM 1.1. Let G be a 2-step nilpotent Lie group. and let L €
u(g) be transversally elliptic. Suppose that there exists a nonzero f € £X(G)
such that L’f = 0. Then L is not locully solvable at 0,

The proof runs roughly as follows: we first show that if £3(G) N Ker
L' # (0), then there is a map I1: £X(G) — Ker L” such that I1 = I1" and Il
is pseudolocal but net infinitely smoothing. Thus there exists f € £XG)
with I1f ¢ C™. Suppose that I is not €* near 0. If one can solve Lu = f
near 0, then f — Lu is C* near 0; hence

N — Lu) = Nf — L'u = Nf

is € near 0, a contradiction. Since local solvability on G in € implies
local solvability in £2 (see [22], Section 14), L is not locally solvable. (This
line of reasoning was suggested by arguments in [7].) In Section 2, we
phrase this argument in terms of microlocal solvability; we apply it to our
situation in Section 3 and Section 4.

In Part I, we specialize to the case where G is an (H)-group; i.e., we
assume that for every 5 € g3\{ 0}, the bilinear form B,ong, X g, defined
by

(1.2) B,(X, Y) = n(IX, Y1)

is nondegenerate. For (H)-groups, the infinite dimensional irreducible
unitary representations are parametrized by g3\{0}. Let , denote the rep-
resentation corresponding to 7 € g>\{0}. Our main result is

Tueorem 1.3. If G is an (H)-group and L € u(g) is transversally el-
liptic, then the following are equivalent:

(i) Ker L™ N L¥G) = (0);
(ii) L is locally solvable;
(iii) there is no open set U C g¢* such that Ker w,(L") # 0 for all
nelU.

That (ii) implies (i) follows from Part I; the equivalence of (i) and (iii)
is standard. To show that (i) implies (ii), we combine an argument of Melin
[16] with the notion of dividing a distribution by an analytic function, as in
[24].
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In Part I11, we give a sufficient condition for L € u(g) to have a global
fundamental solution—i.e., a distribution o with Le = 6 on G. The condi-
tion is that L is uniformly semiglobally solvable; i.e., that there is an inte-
ger r such that for every bounded open neighborhood U of the identity
there exists a distribution ¢, of order at most r such that Lg, = é in U.
We apply this result to show that the conditions of Theorem 1.3 are equiva-
lent to

(1.4) L has a global fundamental solution.

Another simple consequence is that if L is homogeneous and locally solv-

able, then L has a global fundamental solution. The basic result of this

section, incidentally, applies to all Lie groups G diffeomorphic to some R”.
Some examples and open questions are discussed in Section 8.

Part I. Necessary Conditions for Microlocal and Local Selvability

Let U be an open set in R”. We denote by ’(U) the set of distribu-
tions on U and by €(U) the subspace of distributions with compact sup-
port in U. The wavefront set of n € D’(U), written WF u, is the comple-
ment of

{(x, £) e T*U\{0}: there exist ¢ € C (R") and constants Cy with
¢(x) # 0, [(¢u)Y ()| = C(1 + 07"
for all # in an open cone containing £ and for all N},

An operator Q: £'(U) = D'(U) is microlocal if (x, £) ¢ WF u implies (x,
£)e WF(Qu)forall ¢ + Oand allx e U; Qisregularizing at (x, £) if (x, £) ¢
WF(Qu)forallue &' (U). WewriteQ ~ Q' at(x, £)if Q' — Qisregular-
izing at (x, £).

Now let P be a classical pseudodifferential operator on U. We say that
P is microlocally solvable at a point (x. £y) € T3U\{ 0} if for every distri-
bution f on U there is a distribution & such that (xq, £0) & WF(Pu — f).

Our reason for studying microlocal solvability is the following:

ProposiTioN 2.1. Let L € u(q), where g is the Lie algebra of a Lie
group G. If L is not microlocally solvable at a point (x4, £) € T*G\{0},
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then L is not locally solvable at x, (and hence not locally solvable any-
where).

Proof. L is locally solvable at x if and only if L has a local funda-
mental solution in a neighborhood of x, (see, e.g., Proposition 14.1 of
[22]). Hence if L is locally solvable, then one can solve Lu = f in a neigh-
borhood of x, for any distribution . This shows that L is microlocally solv-
able everywhere if L is locally solvable.

We now give a simple necessary condition for microlocal solvability.

ProposiTiON 2.2, Let P be a properly supported classical pseudo-
differential operator on an open set U. Suppose that there is a microlocal
operator II: &' (U) = D'(U) such that

IIP ~ 0 at (.\'0, Eo). Im#0 at (xo. Eo).

Then P is not microlocally solvable at (x. £g).
Proof. SinceIl # 0 at (xq, £p), there is a distribution f € & (U ) such
that (xq, £0) € WF(ILf). If there is a distribution 1 with
(xo, £0) € WF(Pu — f),
then
(xo. £0) € WF(IIPu — IIf) = WF(I1f),

a contradiction. Hence P is not microlocally solvable.

3. Unsolvability for Grusin type Operators. As in [8], we consider
operators on R/L*"2 of the form

3.1) P= L a,DND3,
Ja+Blsm :

with pseudodifferential operators a,3(D,) whose symbols a,4(n) are de-
fined in a conic neighborhood of a point g € R"2\{0}. Define

. Pp)= L  a.gqu°D5.
(3 2) (") lat-Bism “ B(n)t !
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As in [8], we assume that

P(n) = L Pyy),
j=0
where

Pm—j(ﬂ) = l"’ | e —4)/2 ) Cz';i_'i(ﬂ)(’ | " | -1 Q)u( lﬂ | I/ZD')d'

fa+3)sm—j

and C%5” is analytic and homogeneous of degree 0. We also assume that P
is transversally elliptic on the characteristic variety; i.e., that

(3.3) ) )P # 0
latBi=m

for (t', 7') e R"\{0}, where 1’ = |n| "% and 7’ = |5|"?r.
We shall use Proposition 2.2 to prove the following:

THEOREM 3.4. Suppose that there is an open set U C R} such that
Jorall neU.

Ker P(n)* N L2(R™) # (0).

Then P is microlocally unsolvable at (0, 0; 0, 0, yg) for any 9o € U.
For the proof, we need some facts about the operators P(y). Let w =
7/|1], z = 9] "% Asin [8], we may write

m

z"P(y) = AGz, 0)t’. D,) = 'Eo A (1, 0)¢’, D),
ji=

where (z, @) & A(z, w)(t’, D,.) is an analytic family of unbounded opera-
tors (in the sense of Kato-Rellich; see [10]) near any point (z, «) with w =
7/|n| and g # 0. If Ker P()* # 0, then of course Ker P(n) P(n)* # 0. As
in [24], we consider the operator T'(») for small |z|, defined by

17
3.5 T(m) = 5— | (P@)P)* — tnlds,
w oy

where T is a small circle about 0 in C. From the analyticity of the
family b T(y), it follows that if Ker P()P(n)* # (0) for all y in a con-
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nected open set U, then Ker P(y)P(n)* # (0) for all n in the connected
component of R"2\{0} containing U. (See the proof of Proposition 7.1 in
[24].) We shall need the following result:

ProprosITION 3.6. Fix wo. Under the hypotheses of Theorem 3.4
there is an analytic family of vectors v,. .(u) € L(R"") such that

P@)ve (0l'2y =0

whenever |z| and |9/|n| — 9o/ |n0| | are small.

Proof. Note first that 7(n) is a projection onto a finite-dimensional
subspace JC{. ., of L3R™), that T(4) commutes with P(w) P*(w), and that
T(n) varies analytically with 5. As in Kato ([10], Chapter VII, Section 3,
proof of Theorem 1.7), we may assume after an analytic transformation
that 3¢{. ., = 3¢, independent of (z, w). Now the proof of the proposition
reduces to the following result for finite-dimensional spaces.

LemMA 3.7. Lert B({) be an analytic family of N X N matrices act-
ing on a (complex) vector space V, with B({) diagonalizable for ¢ real. Sup-
pose that Ker B({) #+ 0 for all §. Then for a fixed real {y there exists an
analytic family of vectors § v w., defined for |{ — tol small, such that

3.8) B(Ow;=0 for |§— sl small, w;# 0.

Proof. For convenience, let {; = 0. Let K be the generic multiplicity
of 0 as an eigenvalue of B({), | | small, and let A(({), ..., Ay—x(D) be the
other eigenvalues of B(¢). Let Q(¢) be the projection onto the space of zero
eigenvectors away from exceptional points, and define Q({) by

N—-K
3.9) Q) = ,_£Il M.

We shall show that § extends to an analytic family of operators near 0.
Assume this for the moment. Then, since Q % 0, there is a vector w € V
such that 3(Ow # 0. The vectors wp = O(H)w form an analytic family
satisfying (3.9).

Thus we need to show that (3.9) is analytic, or that for any w, wa € V,
the mapping { = (G({)w,, w») is an analytic function from an open set in
C"t0C.If ¢y, - .oy Simpy Gitts - -0 &, are fixed, then & b (O(Ow,, wy) is
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analytic away from exceptional points (see [10], Theorem 11-1.8). To prove
that it is analytic everywhere, we need only show that it is uniformly
bounded. For this, we use some arguments from Section [I-1.5 of [10]. Let
U = {$ 1¢] < e and B({) has at most K zero eigenvalues}. Then U is
open. Let I'({) be a small circle in C around 0 and not enclosing any other
elements of the spectrum of B({). For { € U,

n

1
(3.10) QW = 5 ) RG

T'(

where R({, v) = (B({) — yI)™" is the resolvent. Hence

NO = o($) max IR VI

where p({) is the radius of I'({). We may choose
(3.11) p($) = min|\(D)]/2.
r

Furthermore,

(B()) — y1)7! = (det(B({) — vIN”'S(L, v),

where S(¢, ) is a polynomial in the coefficients of B({) — 1. Since

N-K
Det(B() = v1) =" I 5@ — v

and
ING) — ¥ = ING2

from (3.11), we have

(3.12) | Det(B(3) — vD)| ™" < 2Mmin|\())) V.
J

Finally, since ||S({, )| is bounded for { and v varying in a bounded set,
we have

max [|R(, V] s Clmin| N7V,
yel'($) J
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and hence

N-K

161 = T IN(1-C min|y, (0] ™

is bounded for small | {|. This completes the proof of Lemma 3.7 and
hence of Proposition 3.6.

We now prove Theorem 3.4. We do this by constructing an operator
I1: &/(RM™"2) — D'(R"*"2) such that II and IT* are microlocal and

3.13) Im+0,

near (0, 0, 0, n¢). To construct I, we choose a smooth cutoff function ¢,
with ¢ = 0 for  small, such that ¢ satisfies the additional properties given
in [8) immediately preceding Proposition 3.15. Let

v, (u) = 0(n)v,(u).

Proposition 3.2 of [8] shows that v, is a rapidly vanishing function of « for
each 5. Now let IT* be the (non-classical) pseudodifferential operator de-
fined by

II*f(x, 1) = 2w)™" j ei"'"v,f(ln]"zt)<\ e""""‘v,;(|q|'/2u)f;(u, n)du)dﬂ.

where f; is the partial Fourier transform of f in the second set of variables.
It is proved in Proposition 3.18 of [8] that IT* and its adjoint IT are microlo-
cal. (In fact, I1* may be expressed as a composition of operators of type H;
and H¥ defined in [8).) The desired properties are then proved in [8] for
the analytic wavefront set, but it is easy to modify the arguments to get
corresponding results for the € wavefront set. Since by construction
P¥(p)v,(u) = 0 for » in a cone around 5, € U, we have

(3.14) P*I1*# ~ 0 near (0, 0; 0, n).

Now (3.13) follows from (3.14) by taking adjoints. Finally, IT # 0 near (0,
0; 0, 7o) because IN* « 0 there. Now Proposition 2.2 implies Theorem 3.4
immediately.
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4. Local Solvability of Transversally Elliptic Operators on 2-Step
Groups. Since for much of the rest of this paper we shall be dealing with
2-step nilpotent Lie groups, we begin this section by fixing some notation.
Let G be a 2-step group as in Section 1, with Lie algebra g = ¢, @ g2. We
shall generally identify G with g by the exponential map. A typical element
of g (or G) will be (x, v), x € g, and y € g, a typical element of g* = gF D gF
willbe f = (£, ). £ € gf and 4y € ¢§. Let dimg = n, dimg, = n,. and dimg,
= p,. We fix compatible Euclidean norms on g, g;. 92. 8%, 97, and g3;
these are denoted by ||.

Recall that Kirillov theory (see [11] or [20]) assigns to each ¢ € g* an
irreducible unitary representation x; of G, unique up to unitary equiva-
lence; indeed. the theory describes a way of realizing 7,on £2(R*) for some
k. (The mapping ¢ = mis not 1-1.) Our main result in this section is the
following theorem, which is equivalent to Theorem 1.1.

THEOREM 4.1. Let L € W(g) be transversally elliptic. Assume that
there is a nonempty open set V C ¢% such that Ker v (L’) + Oforali(e V.
Then L is unsolvable.

Proof. For { = (£, 3), consider the form B, defined in (1.3). We
distinguish two cases:

(a) B, is singular for ally € af (the degenerate case);
(b) B, is nonsingular for some y € ¢3.

In the latter case, G has square integrable representations (see [19]). and
B, is nonsingular for generic 5: that is, the generic rank k of B, isn,. We
shall say in this case that G is generically an (H)-group. (Sce [8].)
We consider case (a) first (where n, — k > 0). We shall prove the
theorem in this case by showing that the hypotheses cannot be satisfied.
We begin by constructing the generic representations in the degener-
ate case; cf. [23] or [12]. For f € g*, ¢ = (&, n), let B, = B,; define

g%, = {fe g* Rank B, = k}.

Then (, = (§g. no) € g%, iff (£.no) € gig for every ¢ € gf. Giveny = (0. 9) €
g&e let Ry, ..., R, beabasis for the radical of 8, in g,. Then. asin [23] or
[12]), one may choose U;, V; e q,, 1 = i = k, such that the R;, U;, and V;
(1 =j =< p,1 <i=< k)form abasis of g,. For ¢ € gf, one may now model
Ty on LAR*) so that
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() 7en(R) =V—1ER), allj;
(4.2) (ii) 7 (U)) = 3/8s;,  me (VD) = =151, Vi
(iii) W(f_,,)lﬂz = \/:l ?}[.

We can also arrange matters so that the R;, U;, and V; vary analytically
with » on any component of Qe

By shrinking Vif necessary, we may assume that V is contained in one
component € of g%,. Let £ vary in €, and apply the representations =, de-
scribed above.

LEMMA 4.3.  There exist a function p: € = R, analytic and homo-
geneous of degree 1 in &, and realizations of the =, € C, on LYRX), such
that

. = L it (M (D, )Py,
@9 wdL) 81 2l s s (ms(D, ) u

with the a g, analytic functions and

(4.5) > dop,(V)s™tPuY £ 0 for |[s|+|r]+]{u] # 0.
la|+18]+2]|y|=m

Proof.  This is essentially contained in Proposition 1.3 of [12], except
for the analyticity and homogeneity of u. The analyticity is clear because
the bases can be chosen to be analytic, and the homogeneity in £ follows
from (4.2)(i).

PROPOSITION 4.6. If G is not generically a type (H)-group, then we
cannot have ker w(L") # 0 for all Lin a nonempty open set V C g. (That is,
case (@) cannot occur in Theorem 4.1.)

Proof. Apply Lemma 4.3to L"; then m,(L") has the form of the right-
hand side of (4.4). In the proof of Théoréme 3.1 of [2], it is shown that for
any fixed 1y, there exists K such that if |x| > K, then the right-hand side
of (4.4) is injective. However, the operators ¢ » w,(L7) form an analytic
family of unbounded operators (as in Section 3); thus one can show as be-
fore that if Ker m(L") # (0)in V C €, then Ker 7(L") # (0) throughout
C. But € is a union of gf-cosets; thus if (£, 70) € C, then one can find ¢ ¢
g* such that (£, 5o} € € and | u(£, n9)| > K. (Here we use the fact that p is
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homogeneous of degree 1 in £.) This contradicts the assumption that
Ker 7, (L7) # (0).

We have thus reduced the proof of Theorem (4.1) to case (b), where G
is generically an (H)-group. Here, we use a Fourier integral operator to
reduce L microlocally to an operator of the form (3.2).

LemMma 4.7.  Suppose that G is generically an (H)-group. Let ng € g5
be fixed with rank B, = n,. (Here, n, must be even.) There exist a Fourier
integral operator F associated to a homogeneous canonical transformation
x and a choice of realizations =, such that

x: T*G) — THR" X R;2);

x: (0, 0; 0, 9) 1+ (0, 0; 0, ng):

L ~ F7'PF in a conic neighborhood of (0, 0; 0, 3,),
with P = P{t, D,, D,). where

7,(L) = P4, D,, u).

Proof. This is proved in the course of proving Propositions 4.7 and
4.8 of [8].

Since microlocal unsolvability is unchanged under a canonical trans-
formation, Lemma 4.7 and Theorem 3.4 show that L is microlocally un-
solvable. Theorem 4.1 now follows from Proposition 2.1.

Part II. A Sufficient Condition for Local Solvability on H-Groups

5. Uniform Semiglobal Solvability of Some Operators. This section
and the next are devoted to the proof of Theorem 1.3. As noted in the
Introduction, only the implication (i) = (ii) remains to be proved. We shall
actually prove slightly more.

THEOREM S.1. Let L be a left invariant operator on a group of type
(H) which is elliptic in the generating directions. Suppose that L' is injec-
tive on £XG). Then L is uniformly semiglobully solvable. (See Section 1
Jor the definition.)

Proof. Byreplacing L with LL*, we may assume that L is self-adjoint
and positive. Since g is of type (H), n; = dim g, is even; say n; = 2ny. We
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use one other piece of notation: for f € £X(g, @ g,), /~ will be the partial
Fourier transform in the second variable.
Let K be a positive number and let F € € (g¥) satisfy

Fp) =1 if |9| =K;

Fi) =0 if |ng| = 2K.
Recall that for ¢ = (£, 5) € g* with 4 # 0, the radical R, is just g,; thus the
irreducible unitary representations of G which are nontrivial on g, are

square integrable and are parametrized by g§\{0}. Define maps U,, U;:
L£YG) —~ £XG) by

(5.2)  w,(U\$) = Fipm(¢) for n#0; Uy=1—U,.

(More precisely, we define U, by (5.2) and the Plancherel thcorem for ¢ €
LYG) N LXG): since || U, || = 1. U, extends to £X(G).)

LEmmA 5.3.

(a) For ¢ € 8(G), U ¢ and U;y¢ are C functions.
(b) There are tempered central distributions x,. x3 such that U;¢ =
oux,.J =1, 2.

Proof. If suffices to prove the lemma for U,. From the definition, U,
commutes with left and right translations. Hence if D € U(g), we have

D(U,¢) = U\(D¢).
Therefore D(U,¢) € LXG)forallp e S(G)and all D € U(g); (a) now fol-
fows via Sobolev theory,
For (b), let ¢~ (x) = ¢(x '), set ¢,(x) = ¢(yx), and define x; by
{(xi1. ¢) = (U|¢—)(€')-

This formula makes sense, since U, ¢~ is smooth. We have

dxx1(x) = (x1, (&) 7) = (Us(d))(e) = (U, 8)le) = (U, 4)(x).
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A similar calculation (using the fact that U; commutes with right transla-
tion) shows that x,*¢ = U,¢. Hence x, is central.,

Now let U be an open set in G with compact closure. We shall estab-
lish the following propositions:

ProposITION 5.4.  Assume that L satisfies the hypothesis of Theo-
rem S.1. Then there is a tempered distribution o such that

L(f=0) = U,f forall fe 8(G).

PrROPOSITION 5.5. Let L be elliptic in the generating directions.
Given the open set U as above, there exists K > 0 such that if g € £XG)
satisfies

glx.,n)) =0 for |9]| =K,

then there is a function u € £XG) with Lu = g on U.

These propositions together imply Theorem 5.1. To see this, let Abe a
right invariant Laplacian. For any integer ¢ = 0, there is an integerp > 0
such that for any given bounded open set U, there is a function g € C4(G)
with A”g = é on U. Let o be as in Proposition 5.4, and use Proposition 5.5
to find v, € £XG) with Lv, = U,g on U. Then

L(AP(vy + gxa)) = AP(Lvy + L{gso)) = AP(U,g + U,g)
=A2 =6 on U.

and we need only choose p so that g is greater than the order of 0 as a
distribution.

We conclude this section with the proof of Proposition 5.5; Proposi-
tion 5.4 will be proved in the next section.

Proof of Proposition 5.5. We follow the method of [16]. Write
LI" = P"l = Qﬂl'
where P, = P, (D,)isellipticon g, and Q,, = Q,,(D,, x, D,) is such that

Q,.(D,, x, 0) is constant. (This is possible because L,, is elliptic in the
generating directions.) By perhaps adding a constant to P,,, we may as-
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sume that P,,(£) is always positive. Note also that Q,, and the L; withj < m
are of lower order in D, than P,, is. Now write

L =P,(D,) + Q(D,, x, D,).
Given U, choose a function ¥, € € (g;) such that ¢, (x) = 1 for all x such
that (x, y) € U for some y; let K’ be large enough that ¥,(x) = 0 whenever
|x| = K’. Choose K in a manner to be described below, and let i €
C>(g,*)besuchthat0 < ¢, < 1, y5(§) = I for |£| = 2K, and ¢»(§) = 0

for || < K. We know that P, is invertible in L?; furthermore, y»(D, ) is a
bounded operator on £(g). Let

3o = {fe £Xg): folx, M =0 for [q| = K},
and define A = a(D,, x, n) by
a(§, x, 1) = P () " aADQE, x, DY (x).
Just as in the proof of Lemma 4.6 of [16], one sees that AJC, € ICp and
that I + A is invertible for suitably large K. Choose K accordingly.
Now let ug = (I + A)~'P,,'g, g as in the hypothesis. Then
Lug = P, (I + A)7'P,'g + Quq

=g — P,AU + A)"'P,'g + Qug

=g — ¥oAD,IQY (x)up + Quy

=g + (I — $2(DNQY (¥up + Q1 — ¥1(x)uo.
The last term is 0 on U, and the middle term is analytic (because its

Fourier transform has compact support). Now Proposition 5.5 follows
from the Cauchy-Kovalevski Theorem.

6. The Proof of Proposition 5.4. We follow the general outline of
the proof of Theorem I in [24]; we shall often refer there for details.

We use spherical coordinates on g¥’; a typical element of g3\{0} is 3 =
(o, w), where p > 0 and |w| = 1. Recall that dim g, = n; and dim g, =
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2n; recall also that there is a 1-1 map n b+ =, of g3\{0} into G’ given by
the Kirillov correspondence. (Thus m,(Y) = in(Y) for all Y € g,.) If we
realize 7 ., on a Hilbert space JC, then we can realize =, on JC by the
equations

1'r(p.w)(’Y) = pl/Zqu)(x)' Xeg;
Tpa(Y) = o70.(Y),  Yeg.

Henceforth we shall always assume that the 7, , are realized in this way.
Let o™L) = N"m-2,,(L); recall that L has order m. Then

m

(6.1) o*NLYy = T N"Vag (L)

J=0

This formula makes formal sense for all A € R (positive or not).

Define Sobolev spaces JC*(5), s = 0, 1, ... on the representation
space JC(n) of 7, as follows: f € JC°(n) if f € Dom = (D) for all D € U,(g). A
norm for JC*(y) is given by

170 = =Dl

where || ||o is the usual Hilbert space norm on JC(») and D; is some (fixed)
basis for U(g).

LEMMA 6.2. Regard the unit sphere in g3 as $"2}, imbedded in R"?
C C"™. For each wy€ S"~ " and each ¢ > 0, there is an open neighborhood
Vo (in R") with the following property: for all w € Voand all p = €, 7, )
can be realized on £*(R") so that:

(a) IC(p, w) is independent of p and w (so that we may write
I (p, w) = IC°).

(b) Dom o™(L) = 3" for all N < ¢~ 2 and all w € Vq (recall that
A=K~ 2when \ # 0).

(c) The operator 6™ is a differential operator with polynomial coef-
ficients depending analytically on \ and w. In particular, there is a neigh-
borhood V of Vg in C"2such that the definition of o™“(L) extends formally
to {\eC: |\| < €%} X Vand Dom(¢™ (L)) = IC* for all such (\, w).

(d) The operators d™“)L) have discrete spectrum, and all eigen-
values have finite multiplicity.
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Note. This lemma says that the 6™“)(L) form a ““holomorphic fam-
ily of type A™"; see [10).

Proof. This lemma is proved in Section 4 of [24] in the case where
L =1L, Since L, dominates the lower order terms, the same proof applies
here.

We now define the distribution o. It is shown in [18] that Plancherel
measure on G is

co| Pflp, w)|p"* 'dpdw,

where dw is an invariant measure on $”27}, dp is Lebesgue measure on R,
¢g is a normalizing constant, and Pf is the Pfaffian of the bilinear form
B, . attached to (p, w) = ». If (L) were invertible for all n with || = K,
then we could solve Lu = U, f as in [21] or |3]: define u by

(Y, u) =

co \o \ o1 0" Pf(p, )| Tr(wi, (L) ™" 7o Urf V¥ ))dwdp.
Jo Jgm

(Note that 7, (U, f) = Ofor |p| < K.) Unfortunately, 7, . need not be
invertible for all large p. However, the set of 7 = (p, w) for which =, (L) is
not invertible is the set of zeroes of an analytic function (Theorem VII-1.7
of [10]); if this set contained all y with |9| = K, then we could easily use
the Plancherel theorem to construct an element of Ker L N £%G). Thus
this set is fairly small. To deal with it, we must do some work.

Note that m, (L) and d™(L), A = p~"/2, have the same kernel.

We now prove a lemma which enables us to reduce the problem to one
involving operators on finite-dimensional spaces.

LemmMa 6.3. There are orthogonal projections P, , on £2p, w), a
C*® function x, and a constant K¢ such that:

(a) P, commutes with 7, ,;

(b) the P, , vary analytically on a neighborhood of supp x;

(c) Range P, , is finite-dimensional and contains Ker 7, (L);

(d) supp x is a compact subset of |K, o] X §"7 1 and x(p, w) = 1if
ker 7, (L) = (0);

(e) for each p > K and w, 3 an operator $(p, ) with ||S(p, w)| = Ky
and S(p, w)o®~ V2 L) = I — x(p, WP, .
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Proof. This is proved in much the same way as Propgs'igion 3.1 of
[24). Locally, P, . is the projection onto the eigenspaces of o' ALY with
small eigenvalues; one uses a partition of unity to construct x and to patch
the local constructions together. We omit details.

In what follows, we shall assume for notational convenicnce that the
P, . all have the same rank. (The rank is constant on connected compo-
nents of supp w, and the proof that follows is in essence the same as that for
the general case.)

Define o; by

(6.4)

(02, 0) = ¢p \ \ 1y~ 1

<0 OS5

" P(p, w)| THS (o, w)my, (U29))dwdp

‘oo e

=co| | 0" 1Bfe DN FTHS (o, ey o @Ddadp,
7 = (p. w).
LEMMA 6.5.

(a) The functional > is a tempered distribution.
oo o

|, 170,
JKOSST

X Tr(l — x(p, @)P, )7, (Ud)dudp.

(b) (02, L) = c¢

Proof. For (a), the analysis in Section 6 of [24] applies, in a simpli-
fied form (we need only bound the second integral on the right-hand side in
formula (6.1) of [24]). Part (b) is a straightforward computation, using (¢)
of Lemma 6.3.

Now let M(p, w) = 7o (L)|m Py’ We need only worry about
M(p, w) on a neighborhood of supp x. As described in {24], there is a basis
{e?} of V, = Range P,, y = (p, w), such that:

(a) each e! is a C vector;

(b) # (e, w) is locally analytic for cach w € L2(R"2) when the Ty
are realized as in Lemma 6.2;

(¢) M(p, w) is given locally by an analytic matrix (A,;,-(n)) = A(yn),
where n = (o, w).
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Let B(n) be the cofactor matrix of A(y), so that when Det A(n) # 0,
A()~" = (Det A(n))~'B(»).

Set @ = supp x N (K, o} X §"271), and say that y € €P() if ¢ is defined
on {, Y vanishes at oo, and ¥ extends to a €* function that is 0 off Q.

LEMMA 6.6. There is a distribution A of finite order such that if
¥ € CF(D), then

AAMY() = ¢ \ \s" - 0"V W, w)dwd\.
S Jgn

Proof. Let(p, w) = ®(x, ) = (x ™", w); & maps [K, 0] X §7 ! to
[0, K~'2] X 77!, and (Det A) > &~ extends to an analytic function on a
neighborhood of #(Q) in R X 27!, Now the same analysis as in Section 4
of [24] (using [1] or [15], plus a partition of unity) shows that p?27' 4 o
¢ ~! has a distribution inverse A* of finite order. Define

- ny

=—=—(A'0d) on CF;
2"2"‘]

A has the desired property, as an easy calculation (using the change of
variables formula) shows.
Now define o, by

von e

(01, 9) = ¢y ‘\0 ‘ p"1"! x(p, w)

R s.u.‘*‘l

X L A(n, (U ®)e, B(p. @) P (p.w)dwdp.
. ) i i

LEmMmMaA 6.7.

(a) The functional o, is a tempered distribution.

|07 Trxto. PO, 01, UY)
0 Js

(b) (04, L'¢) = cg

X | Pf(p, w)|dwdp.
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Proof. For each j, the map
é = (m, (Uzd)e, B'(p, w)e?) x(p, )

is a continuous map from 8$(G) to CZ(Q). (The relevant estimates are like
those in Section 6 of [24].) Now Lemma 6.6 applies.

(b} The calculations are like those for equations (3.9) and (3.10) in
[24], but somewhat simpler, we omit details.

Now let ¢ = o) + 0. From (a) of Lemmas 6.5 and 6.7, o is a tempered
distribution; from (b) of those lemmas,

Yoo P

\ wyt N BAO )| Tr(my o(Ud)dwd N

JoOJS

(LU, ¢) = (0’ LT¢) = c()

= (U¢) (e).
This completes the proof of Proposition 5.4,

Part III. The Existence of Global Fundamental Solutions

Let G be any Lie group, with Lie algebra g. Recall that in Section 1 we
defined the left invariant differential operator L to be uniformly semiglo-
bally solvable of order < r (where r = 0) if there exist an increasing family
of open sets ,,, in G with compact closure and a sequence of distributions
£,, such that

(a) l:Jl Q. =G;

(b) £, is of order =< r;
(c) L&, |o; = 6 = unit mass at the identity of G.

Choose an ordered basis { X, ..., X, } forg; let X* = X§1 - - - X%, where
o = (), ..., a,) is a multi-index. The Poincaré-Birkhoff-Witt Theorem
says that the elements X form a basis for U(g). Set |a| = a; + +++ + .
If & is a nonnegative integer, let |¢|x . = SUP|a|sk.en,, | XP(x)] for ¢ €
CZ(Q,); let || llx.., be the dual norm for the distributions of order < k
on(, .

The main result of this section is the following:

TueoremM 7.1.  Let L be a left invariant differential operator on the
Lie group G which is uniformly semiglobally solvable of order < r. Sup-
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pose that G is L-convex (see [6)). Then L has a fundamental solution of
bounded order.

Before giving the proof, we note two corollaries. Recall ({6], Lemmas
2, 3) that if G is nilpotent, it is L-convex.

CoroLLARY 7.2, If Lis alocally solvable homogeneous left invariant
operator on the stratified nilpotent Lie group G (where G is simply con-
nected) then L has a fundamental solution of order < r.

Proof. Let | | be a homogeneous norm on G, and let {,: ¢ > 0} be
the 1-parameter family of dilations on G. If L is locally solvable, then L has
a local fundamental solution £ on some ball about the identity (see [22]).
By applying the homogeneous dilations of G to £, it is easy to show that L
has local fundamental solutions of the same order on every ball. (See [5]
for details.) Now Theorem 7.1 applies.

CoroLLARY 7.3. Let L be a transversally elliptic left invariant oper-
ator on the connected, simple connected H-group G. If L is locally solv-
able, then L has a fundamental solution,

Proof. This is immediate from Theorems 5.1 and 7.1.

The proof of Theorem 7.1 is along the same lines as the proof of Theo-
rem 3.5.5 in [9], but there are some differences. In what follows, we as-
sume that Q,, = 2!, all m. We begin with a simple lemma.

LEMMA 7.4. Suppose that L is uniformly globally solvable of order
< r. Then there is a sequence of numbers {K,,} such that for every [ €
CX(R,,), there is a function u,, € €2 (Q,,+,) such that

(@) Lu,, =f on 9,
(b) " Uy, "r.m = Klll "f"o.m'

Proof. Let ¥, € C7(Q,4;) be identically 1 on Q,,; let u,(x) =
Vo f2E,, ) (x), where m’ is such that @3, C Q,,.. The map f — u,, is
continuous from the | ||g,,, norm to the || ||, ,, norm; let X, be a bound for
the norm of this map. Now the conditions of the lemma are easily verified.

Proof of Theorem 7.1. Let the K,, be as in Lemma 7.4, and let {¢,, }
be a decreasing sequence of positive numbers such that £, ¢,,(1 + K,,)
converges. We shall find functions «,,, f,, € CX(Q,,+1), m = 1,2, ...,
such that:

(7.9) Lu,, = fii
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(7.6) "fm - 5I|s,m < €,
(7.7) “"m-H - um"ro‘m < 27"+ 2K ¢,
Then (7.7) implies that the «,, are converging on each €; to a distribution
of order < ry; hence the u,, are converging in D’ (G) to a distribution ¢ of
order < ry. Since Lu,, = f,, — 6 (from (7.5) and (7.6)), we see that
LE = 4.

We define the u,,, f,, inductively. For m = 1. we let f, approximate 6
closely enough to satisfy (7.6), find #, by using Lemma 7.4, and set f; =
Lu,; since f; = fionQ,, (7.6) still holds. Now assume that we have u,,, £,
Choose g,, € CZ(R,,) such that

"6 - fm — 8m "s.m < ('m+l/2'
Then, of course,

"gm “0.m < em-H/2 + "6 - fm Ils.m < €+ + €m < me-

Let vl" e er(ﬂln"'l) SatiSfy Lvlll = gl" on Q"l’ " V," "l‘o.l" S K"l "g"l "S.I"'
(This is possible by Lemma 7.4.) Then

(7‘8) " Vi "ro.m = 2l{mém
and
L(u,, + vy) = fo + Lv,) = fo, + Gy
where G,, (= L(v,,,)) = g,, on ©,,. Therefore
1
(7.9) "6 = fm— G "s.m < 7eu+l‘

Now choose F,,+, € €7(£2,,4,) such that

Fm+llﬂm = (fm + Gm)lﬂm;

(7.10) "Fm+1 - 6":.m+l < €m+1-
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(Since || |I;.+1 is the total variation norm on measures, (7.9) implies that
the inequality (7.10) can be satisfied.) Now set &,,, 4.y = Fr iy = fiy — G-
The semiglobal solvability of L (or Lemma 7.4) implies that we can find
Win+1 € CT(Q,,+2) such that Lw,, 4y = h,,+, 0on Q,,,. Since #,,,, is 0 on
Q. and G is L-convex, we can find a function W,, 4, € C€2(Q,, +,) such that
me+l = 0on Qm+| and

(7.11) IWos1 = Wantt lrgm < 27"

(See pp. 393-394 of [25] for a proof.)
Now set Uyt = U, + Vin + Wit = Wm+l'fm+l = Lum+l' Then
supp #,, + - Qm+2' and LD fm+l SatiSfy (7'5) On Qm-H'

fm-H = L(um + Vi) L(W,,,+|) - L(Wm+|)
=fut Gm + (l:m‘H _fm -G, = Fm+l;
in view of (7.10), £, +, satisfies (7.6). Finally,

l#tm+1 — iy, "ro.m = " Viu "rg.m T [ Wot1 = Wi "rom
< 27" 4 26, K, (from (7.11) and (7.8)),

so that (1.3) holds. This completes the induction and the proof of Theorem
1.1.

Notes. 1. Essentially the same proof shows that if f € D’(G) has
order < k, then there is a distribution » with order < k + rg such that
Lu = f.(Of course, L and G satisfy the other hypotheses of Theorem 7.1.)

8. Remarks and Examples. We begin with a simple example illus-
trating Theorem 1.1,

Example 8.1. Let G be the S-dimensional Heisenberg group, with
X Y] =[X2 Y2l =T,

and all other brackets 0 (unless given by anticommutativity). For 3 # 0,
one can realize 7, on L(R2) by

3 :
W)= ) =iy (=12, wT) =il

s
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NowletL = Lioy (X; + iY; + nx; — in). Then L is transversally ellip-
tic, and

2,2
Sfoltr, tp) = e VD g Ker w (L) for g > 0.

Hence L is not locally solvable.

It is obviously tempting to try to extend Theorems 1.1 and 1.2 to
larger classes of groups. Because sufficient conditions for solvability gener-
ally seem to be easier to find than necessary ones, and because our results
on sufficiency are weaker than those on necessity, we begin by examining
the sufficiency proof.

The proof of Theorem S.1 naturally divides into the proof of Proposi-
tion 5.4 (“‘solvability ncar o in ;") and that of Proposition 5.5 (*'solva-
bility near 0'*). For Proposition 5.5, the key step is to establish that the
w,(L) form an analytic family of operators for large 5. For this purpose,
one needs to know that every representation corresponding to a large value
of 7 is in *‘general position” (in the sense of Part II. Section S of [20]). It
was here that we first used the hypothesis that G is of type (H).

One might try to prove a corresponding result for n-step groups. Let G
be a stratified Lie group with Lie algebra g = @}, g; such that [g;, ¢;] <
gi+j(g; = (0)if j > k). We might say that G is a generalized (H)-group if
for every nonzero element y € gf. there is a unique representation 7, of G
such that 7,(X,) = i9(X,) for all X € g;. It is casy to check that the 7, are
all square integrable and constitute the elements of G~ in general position
(if K > 1). When & = 2, generalized (H)-groups are just the (H)-groups.

For some of these groups, unfortunately, the Sobolev spaces 3C*(,)
do not seem to be independent of 5. (An example is given below.) Accord-
ingly, we may need to restrict this class of groups further. There are at least
two subclasses for which the Sobolev spaces are independent of »: those
with 1-dimensional center (e.g.. those constructed in (4]), and those of step
3. For these groups, it should not be hard to prove an appropriate ana-
logue of Proposition 5.4. There remains the problem of *‘solvability at 0'";
as of now, we do not have a proof of Proposition 5.5 for these other groups.

We now give the example promised above.

Example 8.2. Let g be the S-step, 10-dimensional Lie algebra
spanned by V;, W;, X, Y;, and Z; (j = 1, 2), with

[Vlv VZ] = Wl! [VI’ W/I =Xj(j = !9 2)1 [VI!XI] = YZ’ [VI’XZI = Y|v
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Vi, Yl =Z;(j =1,2), [Vy, Y|] = =Z,, [Vy, Y]l = Z,,
W, Xl =Z;(j = 1,2), [Wy, X)] = —Z,, [Wy, X3] = Z,,

and other brackets of basis vectors 0 (unless given by antisymmetry). Itisa
tedious exercise to verify that g is a stratified Lie algebra, with g, =
span{V,, V,}, ..., g¢s = span{Z,, Z,}. It is then easy to check that gisa
generalized (H)-group. If ¢is nontrivial on g3, the subalgebrah = g; P g4@®
gs is polarizing. Let G be the (connected, simply connected) nilpotent Lie
group with Lie algebra g, and set H = exp §); then the set

S = {expw W, exp W W, exp v, V, exp vy Vy: wy, wy, v, v € R}

in a cross-section for H\G, and we may realize x,on £2(R*) by identifying
S with R* in the obvious way. Then

a
7r,-(V|) = — V'.)—a‘ + l.\'|V2?(X|) + iv%vzl’()’l)/Z
vy ow

+ i(vyvaw, — viv/AUZ,) + ivywyw,y0(Z,),

TV = aivz
Since m; depends (up to equivalence) only on (|, it is natural to take
«X;) = o(Y;) = 0. In this (rather natural) set of realizations for =, the
operators 7,(V,), m,(V,) span spaces depending on £, and thus 3C'(r,) de-
pends on . It may be that one can find a realization for the & such that the
Sobolev spaces are independent of £, but this example does show that new

techniques will be involved in extending Proposition 5.4.

RUTGERS UNIVERSITY
UNIVERSITY OF WISCONSIN AND UNIVERSITY OF CALIFORNIA AT SAN DIEGO

REFERENCES

[1] M. Atiyah, Resolution of singufaritics and division of distributions, Comm. Pure &
Appl. Math., 23 (1970), 145-150.



OPERATORS ON NILPOTENT LIE GROUPS 613

[2] L. Boutet de Monvel, A. Grigis, and B. Hellfer, Paramétrixes d'opérateurs pseudo-dif-
férentiels & caractéristiques multiples, Astérisque 34-35 (1976), 93-121.

{3] L. Corwin. A Representation-theoretic criterion for local solvability of left invariant dif-
ferential operators on nilpotent Lic groups, Transactions A.M. S., 264 (1981),
113-120.

[4] . Criteria for solvability of left invariant operators on nilpotent Lie groups.
Transactions A.M.S., 280 (1983), 53-72.
I5) and Rothschild, L. P., Necessary conditions for local solvability of homogencous

left invariant differential operators on nilpotent Lic groups. Acta Math.. 147
(1981), 265-288.
6] M. Duflo, and D. Wigner, Convexité pour des opérateurs differenticls invariants sur les
groupes de Lie. Meth. Z.. 167 (1979). 61-80.
171 P. Greiner, 1. J. Kohn. and E. M. Stein, Necessary and sufficient conditions for solvabil-
ity of the Lewy equation, Proc. Nut. Acad. Sci. U.S.A. 72 (1975), 3287-3289.
[8] A. Grigis. and L. P. Rothschild, A criterion for analytic hypocllipticity for a class of
differential operators with polynomial cocfficients. Annals of Math.. 118
(1983). 443-460.
{9] L. Hérmander, Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963,
[10] T. Kato, Perturbation Theory for Linear Operators. 2nd cd.. Springer-Verlag. Berlin,
1976.
{11] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspehi Mat. Nuuk., 17
(1962), 57-110.
[12] P. Lévy-Bruhl, Résolubilité tocale d’opérateurs homogénes invariants & gauche sur des
groupes nilpotents d'ordre deux, C.R. Acad. Sci. (Paris), Ser. J. 292 (1981).
192-200.

[13) . Conditions suffisantes de résolubilité locale d'opérateurs invariants @ gauche
sur des groupes nilpotents, Comm. in P.D.E. 9 (1984), 839-888.
[14) » Resolubilité de certain operateurs invariants du second ordre sur les groupes de

Lice nilpotents de rang deux. Bull. Sci. Math.. 104 (1980). 369-391.
[13] S. Lojasiewicz. Sur le probléme de division, Studia Math. . 18 (1959). 87-136.
[16] A. Melin, Parametrix constructions for some classes of right-invariant differential oper-
ators on the Heisenberg group, Comm. P.D.E.. 6 (1981), 1363-1405.
[17] G. Metivier, Equations aux derivées particlles sur les groupes de Lie nilpotents, Sem.
Bourbaki. Expasé #583, 1981.
. Hypoellipticité analytique sur des groupes nilpotents de rang 2, Duke Math. J.
47 (1980), 195-221.
{19} C. C. Moore, and J. Wolf, Square integrable representations of nilpotent groups, Trans-
actions A.M.S., 185 (1973), 445-462.
[20] L. Pukanszky, Legcons sur les Représentations des Groupes. Dunod, Paris, 1967,
{21} L. P. Rothschild, Local solvability of lefi-invariant operators on the Heisenberg group,
Proc. Am. Maith. Soc.. 74 (1979), 383-388.

{18]

[22} . Local solvability of sccond order differential operators on nilpotent Lie groups,
Ark. Math., 19 (1981), 145-175.

[23} and E. M. Stcin, Hypoelliptic differential operators and nilpotent Lic groups,
Acta Math., 137 (1976), 247-320.

[24] and D. Tartakoff, Inversion of analytic matrices and local solvability of some

invariant differential operators on nilpotent Lie groups, Comm. P.D.E.. 6
(1981). 625-650.

[25) J. F. Treves, Topological Vector Spuces, Distributions, and Kernels. Academic Press,
New York, 1967,



