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0. Introduction and main results

Let M be a manifold of class C* with a CR structure; i.e., there exists a bundle ¥/,
called the CR bundle, with ¥ = CTM, the complexified tangent bundle of M,
satisfying

.1) ¥Ya¥ =0) and [¥,¥]c?.
We shall say that M is of codimension [ if dim¢ ¥ =n and dimgM =2n+ 1.

(0.2) Definition. A CR manifold M has a CR local group action if there is a Lie
group G with an open neighborhood V of the identity e in G and a smooth mapping

(0.3) H:M x V=M,

satisfying the following. First, H is a group action i.e.
H(H(m, g,),g;) = H(m, g,g,), H(m,e)=m

for all meM and all g,, g,V with g,g,eV. Second, for each geV the mapping

m— H(m, g) is a CR self mapping of M; i.e., its differential maps the CR bundle
v of M into itself.

If M has a group action (Definition (0.2)) and if X g, the Lie algebra of G, we
define a vector field X* on M by taking X} to be the push forward of X at (m,e)
under the mapping H i.e.

0.4) X*f(m)=%f(ﬂ(m,exx> XD)a

for feC*(M). We let & = &(G) be defined by
0.5) &={X*:Xeg}.
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A space E of real, smooth vector ficlds on M is transversal to ¥ if for all meM
(0.6) ¥ u®¥ + CE,,=CT,M;

it is called strictly transversal if dimg E = dimg E,, for all meM and

©.7) V' u®¥ o ®CE, =CT,M

(which implies that E is a bundle of dimension I, the codimension of M). A group
action is called transversal (resp. strictly transversal) it its &(G) defined by (0.5) is
transversal (resp. strictly transversal) to 7.

A real sbmanifold M’ of C"*' of dimension 2n+ I is generic if it is locally
defined by {Z:p(Z,2)=0,j=1,...,1}, p; real, smooth and dp,,...,dp, linearly
independent. It has a natural CR structure with ¥ being the bundle of
antiholomorphic tangent vectors to M’. A CR manifold M is called embeddable if
there is a CR diffeomorphism between M and a generic submanifold of C"*',

We have the folowing results.

Theorem 1. Let M be a CR manifold with a local CR group action given by a Lie
group G. Then & = £(G) is a Lie algebra, and

08) [&,l]<L

where L= C®(M,¥"). Conversely, if E is a finite dimensional Lie algebra of vector
Jields on M satisfying (0.8) then there is a Lie group G and a local CR action H of
G on any open relatively compact submanifold M = M such that E = &(G). In addition,
G can be chosen so that dim G =dim E, in which case G and H are unique up to
group isomorphism.

Moreover, if M has a transversal local CR group action, then M is locally
embeddable as a generic manifold in C"*'.

Theorem 2. Let M be a CR manifold with a transversal CR local group action H
given by a Lie group G, with & defined by (0.5). If dim &, is independent of meM
(i.e. & defines a subbundle of TM) then there exists a local CR embedding n of M
into M’ = C"*! for which the mapping

(0.9) p—meH(n™'(p),g), peM’

extends holomorphically to an open neighborhood of M’ in C"*! for all geV.
Furthermore, any other embedding with this property is biholomorphically equivalent
tom.

(0.10) Remark. In Theorem 2, M’ need not be a real analytic generic manifold (as
the proof of Theorem 2 shows.)

(0.11) Remarks. Even for strictly transversal group actions, there are CR embed-
dings for which the action does not extend holomorphically, as Example (2.22)
shows.

To state our final result we recall some standard definitions. If M is a CR
manifold and f a function (or distribution) defined on M, we shall say that f is
CRif Lf =0 for all Lel = C*(M, ¥"), where ¥ is the CR bundle of M. If M is a



Transversal Lie group actions on abstract CR manifolds 21

generic manifold of C**' given by p =0, with p=(p,,...,0,), we define a wedge
of edge M by

Wr={ZeO:p(Z,Z)eT},

where O is an open neighborhood in C**! of poeM and I' is an open cone in R.
If h is holomorphic in % - with tempered growth near M then its boundary value
on M, bh, is a CR distribution (see for example [1] and [3]).

Theorem 3. Let M be a generic manifold with a strict local group action which
extends holomorphically to a neighborhood of M in C**'. Then locally every CR
distribution [ can be decomposed

0.12) =73 bh,
j=1
where h; is holomorphic in a wedge W r, with edge M.

Historically transversal CR group actions were first considered by Tanaka
[12], who studied hypersurfaces with one parameter transversal group action.
Theorem 1 extends and complements results obtained by the authors jointly with
F. Treves [6]. The proof of the embeddability makes use of a theorem proved in
[4] and is related to earlier work of Jacobowitz [7], in the abelian case.

Theorem 3 was proved in the case of an abelian group action in [6]. An example
of Trépreau [13] shows that decomposition of the form (0.12) does not hold in
general (see also [S]). Our proof is based on a mini-FBI transform adapted to the
group structure (similar to the one used in [1] in the abelian case) which might
be of independent interest.

We would like to thank the referee for pointing out that Lemma (2.1) was
incorrectly stated in an earlier version of this paper.

1. CR group actions, proof of Theorem 1

We assume first that we have a local CR group action H on M given by (0.3) and
put & = &(G) as in (0.5).

Proof of Theorem 1. To show that & is a Lie algebra and X—X* is a
homomorphism we refer to Nomizu [10, Chap. 1, Sect. 6]. In order to prove (0.8),
let Lel and X *e#. Then by Nomizu [10, Chap. 1, Sect. 2],

o1
(1.1) [X",L]=l|m?(L—<p;-L)

-0
where ¢, is the 1-parameter group of transformations associated to X*. On the
other hand, by a uniqueness argument for ordinary differential equations it is easy
to see that

(1.2) @{m)= H(m,exptX),
where exp:g— G is the usual exponential map. Since by definition of a CR map,
(1.3) H(@, )Y ) < ¥ )

the desired conclusion (0.8) then follows from (1.1), (1.2) and (1.3).
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For the second part of Theorem 1, let E be a finite dimensional Lie algebra
of vector fields on M and let G be a Lie group with Lie algebra g isomorphic to E
and

o.g—>E

an isomorphism. We define for M an open relatively compact subset of M and V,
a small neighborhood of the identity in G, a mapping H:M x V — M as follows.
If Xeg and ¢ sufficiently small we set

(1.9) H(m,exptX)= f(m,1?),

where f is the unique solution of

(1.5) ‘;—{(m, t)=o(X)(f(m,1)), flm,0)=m.

This defines a local group action since the Baker-Campbell-Hausdorfl formula
(see e.g. [14]) holds (not only in Taylor series) for the exponentials of vector fields
which form a finite dimensional Lie algebra; it is clear that X * = o(X), with X *
as defined by (0.4). Hence the restriction of E to M is 6“(6)

We must show that the action defined by (1.4) is CR, i.e. (1.3) holds. For this,
let L,,..., L, be a local basis of L near mye M. By assumption (0.8) for every X *eE
we have

(1.6) [X*, L= Z %Ly,

where a, are smooth functions defined near mq. If f is given by (1.4) we write
Sdm) = f(m, t). We must show there exist functions C w(m, £) so that

(1.7) SdLy g vm) = Z Cinlm, 1)Ly s

i.e. for any smooth function ¥ on M near m,

(1.8) CL eI () = ; Ciu(m, OL3(m).
To prove (1.8) we set

(1.9) uf) =L f)f,'m), 1<j<n

By Nomizu [10, Proposition of Sect. 2, Chap. 1] we have

(110 0= X, L,16)0m),

We shall compute (du;/dt)(t) and show that the u; satisfy a linear system of ordinary
differential equations. Since f, . = f;of, and hence f,}. = f 7 'o f ! we have, using
the definition (1.9),

(1.11) uy(e + 1) = [L( £, )N S 67))
where § = o Jo = f71(m). Differentiating (1.11) with respect to ¢/, putting ¢’ =0
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and using (1.10) yields

(1.12) %(t) = (X", LIPNA)
so that by (1.6)
(113) ‘%(z)=za,-k(f,“(m»uk(r).

We write (1.13) as
(L14) % )= A0, )

where u(t) = (u,(2), ..., u,(t)) and A(m, 1) is an n x n matrix with smooth coefficients.
For m fixed let V,(m,¢),...,V,(m,¢t) be n linearly independent solutions of (1.14).
Then we have

(1.15) u(t) = Co(m)V,(m, £) + - + Cofm)V,(m, 1).

Since u(0) = (L ¥(m),...,L¥(m)), we conclude that (1.8) follows with Cj smooth
and independent of . This completes the proof of (1.3).

Uniqueness of G and the action H, up to group isomorphism, is a consequence
of the following lemma.

(1.16) Lemma. Let M be a smooth manifold with two group actions -
(1.17) H:V;xM-M, j=12

with V; a neighborhood of the identity in a Lie group G, Let &;= 6(G) be defined
by (0.5) and assume dim G;=dim &}, j=1,2. Then

(1.18) &,=8,
if and only if there exists a group isomorphism n:G; — G, such that
(1.19) H'(m,g) = H*m, n(g))

Jor gezV,, gen~\(V,), meM, where V; is an open neighborhood of the identity in G,
j=12

Proof. Leta;:g;— &; be the linear mappings from the Lie algebras g; given by (0.4).
By the dimension assumption and the first part of the theorem, the mappings o;
are Lie algebra isomorphisms. If (1.19) holds we have ¢, =g,°n’ so that
71(X) = a,(z(X)) which proves (1.18).

Conversely, assume (1.18). After a group isomorphism 7:G, » G, we may
assume G, =G, =G and o,(X)=0,(X)=X" for all Xeg. We shall show that
H'=H?2 Let Xeg, meM and put

(1.20) fm, t) = Hi(m,exptX), j=1,2.

1t suffices to show that f'(m,t) = f3(m,¢) for || small. By definition of o; we have
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for ¢ smooth on M

(121) o X)0(m) = = o Hom, D) = 1,2
We claim .
7
(1.22) o _x *(fm,1)).
ot
Indeed,

(1.23) SHm,t + )= Hi(m,exp(t + ')X) = H{(H/(m,exp tX),exp ' X).

Differentiating (1.23) with respect to ¢’ and setting ¢ =0 then yields (1.22). Since
SHm,0)=m, j=1,2, by uniqueness we conclude f! = f2, which proves Lemma
(1.16), and hence the uniqueness in Theorem 1.

For the last statement of Theorem 1, we apply the first part and the main
theorem in [4] to conclude the desired local embeddability of M.

(1.24) Example. We shall construct a five dimensional CR manifold M, of
codimension 3, on which the 3-dimensional Heisenberg group G acts strictly
transversally. M is given as embedded in C* by the parametrization

(1.25)  ¥:(z,5)eC x R*—(z,s, +ilz|%, 5, +i|2|*, 55 — 2is, | 2|* + 2is,)z|?).
A basis for L is given by

(1.26) L= %— iz8, — 2iz%z§, — 2237%S,,
i) 2 0 0 0
where S, = —+2s,—, §;=——25,—, S, =—. Note that $,,8,,8,} is
re S ds, 26s3 2 0s, 1633 3 054 ° at {51,5, 5} is a

basis for the space of right invariant vector fields on the 3-dimensional Heisenberg
group with multiplication

(1.27) 5'8 =(8y + 51,8, + 53,53 + 53 + 25,5, — 25 5,).

(In [6] it was proved that if there is a Lie algebra E of vector fields strictly
transversal to ¥, then one can find coordinates (z,s) for M and a basis {L;} for

L of the form L,=ai_+Zaﬁ(z, 2)S,, where {S,} is a basis for the right invariant
Z

vector fields on the Lie group corresponding to E). If we denote by z, w = (w,, w,, w3)
the coordinates in C* then the group G = R? acts on M through the parametri-
zation (1.25):

(1.28) H((z, w),5) = ¥(z,5°5)

where Yi(z,5) =(z,w) and s'5 is given by (1.27). It can be easily checked that the
right-hand side of (1.28) is equal to

(1.29) (2, W) + 51, Wy + 55, W3 + 55 + 2w, 5, — 25, w,) = (z, w-s'),

where w-s’ denotes the extension of the group multiplication (1.27) to C3, the
complexification of G.
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The holomorphic extension to C* of the action is then given by (1.28) and
(1.29) as

(1.30) H((z, w),s') =(z,w-s).

In general, the formula for the holomorphic extension of the group action, as given
by Theorem 2, is not as simple as in this example.

2. Holomorphic extension of group actions. Proof of Theorem 2

We shall now prove Theorem 2. We assume that (0.6) holds where & is the Lie
algebra given by (0.5) We denote by I” the dimension of & as a Lie algebra and
by I' the dimension of the fiber &, meM, which by assumption is independent of
m. By (0.5) we have I > I > I. We begin with the following lemma.

(2.1) Lemma, Suppose that E is a finite dimensional Lie subalgebra of real vector
fields defined on a smooth manifold M of dimension N for which dim E,, = I' is constant
in m. Then around every myoeM there exist local coordinates s,,...,5p, Uy, Uy _p
such that any TeE can be wrilten in the form

v
22 T= k; ey, s)a%‘

with ¢, smooth, real analytic in s, uniformly in u.

Proof. Since the vector fields in E are real and form a bundle satisfying the

integrability condition, by the Frobenius theorem we can find coordinates s and

u vanishing at mq so that (2.2) holds with ¢, smooth. We shall show that there is

a smooth change of coordinates, (4, s)— (1, s') such that in the new coordinates the

coefficients in (2.2) are real analytic in &’ uniformly in u. Let dimE={" and

Ty,..., T}~ a basis of E with T, ..., T;. linearly independent at mp and 7., ,,..., T}
v

vanishing at mo. Put S,=T; for 1SS!I and S;=T;+ Y, duWT, for
h=1

I'+15j<U, where the d; are the uniquely determined smooth functions such
that S; vanishes identically for s =0, for j between ! + 1 and I". We introduce the
exponential coordinates (u,s’) defined by

(u,s"\—(u,s) = (u,exp( !Z 58 j)-O)

j=1
where 0 denotes the origin in R". We claim that for any k, 1 <k </,

v r
(exp tS,,)(exp Y 58S ,)-0 = exp( Y. bult,u, s’)Sp)-O
j=1 p=1

with by (t, 4, s') real analytic in t and s’ small, uniformly in ». Indeed, since the S
1£j<F, form a finite dimensional Lie algebra for each u fixed we have, by the
Campbell-Hausdorff formula
I I’
(exp S,‘)(exp Y s}Sj) = (exp Y. bylt,u, s’)S,) (exp
Jj=1 p=1

Z bkp(t, u, S')Sp).

"
p=r+1
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Since the coefficients in the Campbell-Hausdorff formula depend analytically on
the structure constants of the Lie algebra, the functions b,, are analytic in ¢, &
and dj(u). The vanishing of S, I'+ 1 < p<I" at s =0 implies that

-

(exp Y by, u,s’)S,)-O =0,
p=l'+1

which completes the proof of the claim above. Finally, in the coordinates (i, s") we

have S, = Z ab*"(o, ,s’) P which completes the proof of the lemma.

pe1 Ot P

(2.3) Lemma. Under the assumptions of Theorem 2 there exist local coordinates (u, s)
on M such that there is a basis L; of L which can be written

2n+1-1 a
(24) L= Zl a;(u, s)a + Z qu(u,s)
o=

j=1L,...,n, where the a;, and b;, are smooth, and real analync in s uniformly for
Jfixed u in a neighborhood of 0.

Proof. We choose coordinates (u,5) given by Lemma (2.1) and T,..., T,. a basis
of the Lie algebra & written in the form (2.2). We may assume that T 1.0 I} AL

linearly independent; therefore we have T;= Z a, )T, V' + 12 jS T, with ¢,
k=1

smooth and real analytic in s uniformly in u. Since dim ¥ ,,=n for meM, by

elementary linear algebra arguments we can find a local basis L,,...,L, of L of

the form

2n+1-—-
2.5) L= i + Z aﬁ(u,s)— + z bpw,9)T,, 15jsJ
au, k=J+ llk k

=pn-=J+1
and
2n+1-1 2
26 L= Y a,,,(u,s) +T g+ Z by, J+15jSn,
k=J+1 k=a—-J+1

with 0 £ J <n and a, b,,‘ smooth, a(0)=0,for J+ 15 j<n.

We shall prove that in fact both aj, and by, in (2.5) and (2.6) are real analytic
in s, which will yield (2.4). Using (0.8) and (2.5), (2.6) we obtain for j, k, 1 S j </,
1£kEn,

27 [T, L] = ZJ Bis(ut, S)L,.
9>
Since & is a Lie algebra we obtain, after substituting for T, ' + 1 £j < /",
v
2.8) [TpT)= Y fiau9)T,, 1=j,q=1,
r=1

with f;,, smooth and real analytic in s, uniformly in u. By Lemma (2.1) we may
write for I Sp<l, 1 £kE2n+1-T1

’
2.8) [T,,,%] = Zl Yoreltt, )T,
k r=
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with y,,, real analytic in s, uniformly in u. Calculating the left hand side of (2.7)
and making use of (2.8) and (2.8') yields

Z (Tak,) + Y (ThJT,+ ¥ biafialIT, + Z Jin-siT,

q>n~J g>n=J
1Er el
(2'9) + z Z akp?jprTr+ Z ;l"jkrT.r
p>J 15rsl 1srsl
d
= Zﬂjkl Ealp + Z bqu""I; -J |
(>4 ou, i,
q n

'ijn 1§k_5_.’

with §,, = { and the convention that f,, _, =0fork<J.

0 k>J
Taking the coefficients of T,..., T,_; in (2.9) we obtain
(210) y;kr+ Z ahp?jpr"' Z bkquqr+f1k -t = ﬂ1k1+n r=1,. -J
q>n—

Similarly, taking the coefficients of T,_;4,,..., T in (2.9) yields

(2'11) 'ijq+ Z akp?)pq'*’ T}bkq+ z bhrf;rq'l'fjk -Jq = Z Bﬂcl 199

r>n—=J
forallj kg, 1SjSl,n—J <qgl',1 £k <n. Also, taking the coefficient of /du,
in (2.9) we obtain

(2.12) Tit,= Y, Biuthp-
t>J

We denote by A the vector (,,), by B the vector (b,,) and put C= (;) After
substituting (2.10) in (2.11) and (2.12) we obtain
(2.13) T;,C=Fysu,C), j=1...,I

where F is real analytic in s, smooth in u, and quadratic'in the components of C.
The analyticity of C with respect to s, uniformly in u, follows from the ellipticity
of the system (2.13).

The proof of Lemma (2.3) is now complete.

(2.14) Lemma. Let M be a CR manifold of dimension 2n+ 1, and codimension .
Assume that around m,eM there are coordinates u,,...,Uzp4i—p Sy5....5¢ and a
basis L, j=1,...,n,of L, of the form (2.4) with coefficients real analytic in s uniformly
in u, and such that L,, ., 80s,, 1 £j<n, 1 Sk, span the tangent space to M
at my. Then there is a local embedding of M into C"“ given by a CR mapping
W1 (4,5),- .., Wns1(u,5)) with ; real analytic in s. In addition, all such embeddings
are equivalem up to biholomorphism.

Proof. First we introduce new real variables s},...,s;. and denote by W the
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subbundle of CT(M x U), U <R" open, whose sections are spanned by A s
1 £j £ n,and (9/0s,) + i(9/0s;), 1 Sk < I', where A;is obtained from L; by replacing
s by s+ is’ in the coefficients. It follows from the assumptions of the lemma that,
after shrinking M and U

(W,W]lcW, W+ W=CTM x U).

The embeddability then follows from the Newlander-Nirenberg Theorem [8] (see
also Nirenberg [9].) In fact, there is a smooth change of coordinates x = x(u, s),
y= y(u,s)t =t{u,s) with x, yeR"*", teR"~!, such that # is spanned by Eaz'_,’
1SjSn+l, a%’ 1Sksr—1.

To prove the last statement of the lemma, we observe that any CR function f

on M, real analytic with respect to s extends to a function annihilated by the

sections of %/, i.e. by A;and —aa— + i%. Therefore, f(u,s) = H(Z(1,5),...,Z, +(u,5))
sy Os;
with Z (4, 5) = x;(u, 5) + iy;(, s), with H holomorphic in C***. This proves Lemma
(2.14).
By Lemma (2.1) we can find coordinates (1, s) on M for which the group acts
on s alone i.e. for geG

2.15) H((u,5), g) = (u, a(u, s, 9)),

where a(u, s, g) is a local group action on R! for u fixed. It follows from (1.4), (1.5)
and Lemma (2.1) that a(y, 5, g) is smooth and real analytic in s and g uniformly in u.

(2.16) Lemma. Under the assumptions of Theorem 2, if h is a CR function defined
on M and geG, then the function (u,s)—h(u, a(u, s, g)) is again CR, where (u,5) are
coordinates given by Lemma (2.1); we have used the notation (2.15).

Proof. Let L,,...,L, be a basis of L. and let f(m) be the flow of a vector field Ted,
with fo(m)=m. By (0.8), as in the proof of Theorem 1, we obtain (1.8) with ¢
replaced by h. The Lemma follows since Lz =0.

End of proof of Theorem 2.

Let (u,s) be the coordinates on M given by Lemma (2.1) and (u,s) the
embedding of M in C"*' given by Lemma (2.4). Using Lemma (2.16) we see that
for geG near the identity the mapping

(u, s)—Y(u, alu, s, g))

defines another embedding of M in C**'. By the uniqueness of Lemma (2.14) we
conclude that there exists a biholomorphic mapping Z — H,(Z) in C"*'such that

2.17) Y(u, a(u, s, g)) = Hy(y(u, s)),

which proves (0.9).
To complete the proof of Theorem 2 it will suffice to show that if

' :(u, )Y (u,5)
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is any CR embedding of M into C"*! for which the group action extends
holomorphically then ¢’ is real analytic as a function of s. (For then, the previous
argument shows that ¢’ is biholomorphically equivalent to the one constructed
above.) Since the mapping (u, g)— (1, a(y,s, g) is real analytic and surjective, it
suffices to show that gif’'(u, a(u, s, g)) is real analytic uniformly in u. Since
(2.18) H/ (u,5),9) = ¥'(u, alu, s, )

we have

H(y'(u,0),9) = ¥'(4, au, 0, 9)).

Hence it suffices to show that g— H(i'(x, 0), g) is real analytic. Since by assumption
Z—H(Z,g) is holomorphic the proof of the theorem will be completed by the
following result.

(2.18) Lemma. Let H:U x V = C" be a smooth local group action, where U < C"
is a neighborhood of 0 and V is a neighborhood of the identity in a Lie group G.
Suppose that Z— H(Z,g) is holomorphic for each geV. Then g—H(Z,g) is real
analytic in a neighborhood of the identity (for Z fixed).

Proof. Let (ty,...,1,) be a system of exponential coordinates near the identity in
G. Then by the Baker-Campbell-Hausdorff formula the product (ty,...,t,)
(t),---5 ) =mlt,t') is of the form

(2.19) my(t, )=t + £, + O({t][t']).

By the group law

(2.20) H(Z,(tys...0tp) (- ) = HH(Z, (4, ..., ), (E)5 0, 1))
Differentiating (2.20) with respect to ¢; and setting ¢; =0 yields

@21 EH,(2,07550,0)= H(HZ 0.0}
f)

.0 .
The functions my(t,t’) are real analytic and by using (2.19) the matrix a—':'f(t, 0) is

i
invertible near ¢ =0. Since H,(Z,0) is holomorphic in Z we obtain that H(Z,t)
satisfies an elliptic system, for fixed Z, of the form

v, =Afvt), k=1,...,p,
with A, real analytic. Hence H(Z, r) is real analytic in ¢, which proves the lemma.

(2.22) Examples. We give here two explicit examples of CR manifolds with
embeddings for which their transversal group action does not cxtend
holomorphically. For the simplest example, we let

M = {(z, w)eC::Imw=f(Rew)},

where f is a real valued, smooth function, f{0) = 0, which is not real analytic near
0. Then the mapping

H:z,s+if(sh—>(z,s+t+if(s+1)
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defines a global 1-parameter CR group action on M. Since M may also be embedded
in C? with image {(z,w)eC?:Im w = 0}, the uniqueness of Theorem 2 proves that
H does not extend holomorphically. (This could also be proved directly by using
Lemma (2.18).)

We can also construct such an example for an embedded strictly pseudoconvex
manifold. Take

M ={(z,weCr:w=s+i|z|> + f(z,2,5)},

where seR, f a non real analytic solution of (ai_ —izaz) =0, f(0)=0. The
mapping z §
@s+ilz)? + @, 2,90z s + t+ilz]> + f(z, 2,5 + 1))

defines a CR 1-parameter group action which does not extend holomorphically
for this embedding.

3. FBI transform on a group. Proof of Theorem 3

We shall prove Theorem 3 by defining an analogue of the FBI (Fourier-Bros—
Iagolnitzer) transform (see [11]) on a Lie group, and then using an argument
similar to that used in [6], where the case of an abelian group is discussed. (See
also [2] where a related transformation is discussed.)

Let G be a Lie group of dimension / and X,,..., X, be a basic of g. If V is a
small neighborhood of the identity in G we denote by & the real analytic
diffeomorphism given by

3.1) O: VR, da)=a=(x,...,q),

where a = exp(Za;X ;). We denote by da the left Haar measure on G. For a function
u defined in V with compact support we have

(3.2 fula)da= | w(® ~'(@))o(x)da,

G Rt

where ¢(a) is a real analytic function. We normalize the Haar measure by taking
6(0)=1.If f and h are in LYG,da) we write

(3.3) f+hia)= £ f(b™ a)h(b)db.

If S is a right invariant vector field on G we have

(3.9) S(f *h)(a) = (f = Sh)(a).

For he C3 (V) we define the FBI transform F(h, a, ¢), EeR', ae G near the identity by
(33) Fhad)= £ exp(i®@(b~'a) ~|EI[O (b~ 'a)]*)A(@(b™ " a), E)h(b)db,

]
where A(o, €)=(1 +i a,-l-%") with a =(ay,...,). A standard integration by
i=t

parts argument shows that F(h, q, ) is rapidly decreasing in &.
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(3.6) Lemma. The inversion formula
1

ha)=— | F(h,a,&)d

(a) (Zn),&]'m (1, a,8)d

holds for he Cg(V) and a€G, a near the identity.
Proof. We note first that

t=0

h(a) = lim (;—nngzn;exp(id)(b' 10)¢ — &2 | E[2)h(b)dbdC.

Indeed, this is a slight variation of Lemma I of [2]. By making the change of

contour E— &+ id(b~ la)% = @ asin the Euclidean case (see e.g. [6, 11]), we obtain

Ha)=lim—— [{ cxp(®(b~ a)t— (KO 'a) —c*[A)A®(a), Oh(bbd,
e~0(27) zeRibec
which proves the lemma by a standard limiting argument.

Now let M satisfy the assumptions of Theorem 3 and (u,s) be coordinates as
introduced in the proof of Theorem 2. Here ueR3" and seR', where R' is locally
identified with the group G. We consider the embedding given in the proof of
Theorem 2. By choosing S,,...,S; to be right invariant vector fields on G as in
[6]'we may write a basis of L in the form -

!
3.7 L= —a} + Y a%(z,2)S,
6z b p=1

Now let h be a CR function on M. We shall introduce a mini-FBI transform of A
adapted to the group structure. We parametrize M by (x, y,s), and consider the
embedding defined by z = x +iyeC", w=y(z,Z,5)eC’ with ¢ satisfying 1(0) =0
and det ¥,(0) + 0 and ¥ analytic in s. By the implicit function theorem we can find
G(z, Z,w), analytic in w, such that y(z,z,G(z,Z,w)) = w. Let xeCg (V) with x=1
near the identity. We write

(38)  F(xh,z,Z,w,)= [exp(i®(s™'G(z,Z, W) — |EI(P(s ™' G(z, 2, W))?)
G

“A(D(s™ ' G(z,Z, w), )x{s)h(z, Z, s)ds.

This is defined for (x, y) small and for weC' small; the group multiplication has
been extended to the complexification of G. Note that if w = y¥(z, Z, s) then (3.8) is
the FBI transform, as defined by (3.5), for the function x(:)A(z,Z,*). Therefore, it
follows from Lemma (3.6) that we have for (z, Z, s) small

a1 R
(3'9) h(Z, z, S) = (21‘)! 'j;' F(xh’ 2,2, III(Z, 2 S), C)dﬁ

We now modify the argument for the proof of Theorem I1.3 of [6] for the present
situation. Let I',,..., T, be strictly convex cones contained in R’ with

R':}Ul rl meas.(rjﬁrk)=0’ j+k‘
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For a CR function h we define ; by
1

(3'10) hj(z9 2, S) =% I F(Zh, 2,2, l,b(z, Z, s)l é)dé'
(27) 1,
It follows from (3.9) that h= ¥ h, We define H,(z, 7, w) by
j=1
1
']1 H 9_7 - F ” t-v ) d
(3.11) 2,2, w) (Zn)'i[, (xh, 2,2, w, )d¢

for (z,w)e W ), where #; is a wedge given by {Im G(z,Z, w)e¥,}, with z,w small
and €,€ I'"}, where I'{ is the polar of I';. To show that the right hand side of
(3.11) is defined and holomorphic as a function of w, it suffices to show

(3.12)  lexp(i@(s™'(s"+ i) — |EI[P(s™ (s’ + it)]*)| S exp(— x| €|¢])
forsomea > 0,£e;and sesupp r, te€, s’ and 1 sufficiently small. We note that
(3.13) D(s™I(s'+ it)) =5 —s+it + O(|5'||s], Is]|¢])

(by the Campbell-Hausdorff formula). Clearly it suffices to prove (3.12) with s’ =0.
It is then an easy consequence of (3.13).

(3.14) Lemma. For every k=1,...,n, j=1,...,r, there exists K,eC™(0,#(U)),
where O is an open neighborhood of 0 in R?" and U an open neighborhood of*0 in
C! (here C*(0,#(U) denotes smooth functions on O with values in H(U),
holomorphic functions in U, such that Lh(z,Z,5) = K|y for z, s small.

Proof. By (3.4) and (3.7) we obtain
(B15)  Lhfzz,s)= [[ exp(d(s™'s)E—|EI[@( 9N Lix)(2, 5, 5)

s'eGéery
-A(D(s' ™ 1s), Ei(z, 2, §')ds’ dE.
Since L,y =0 near the origin we can replace s by G(z,Z,w) in the right hand side
of (3.15) to obtain the desired function K, which proves the lemma.
Next we claim that
(3.16) 0:, H;(z,Z,w) = K(z2,Z,w)
for (z,w)eW;. Indeed, we have, since L;j =0 and using Lemma (3.14),
3.17) 0; Hz,z2, W cpizz.9 = LalH {2, Z,0(2, 2, ) = K (2, 2,¥(2, 2, 5)).

Hence the functions 0, Hj(z,z,w) and Kj(z,Z,w) agree on the hypersurface
w=y(z,2,5) and are both holomorphic in #";. By uniqueness, (3.16) holds.

Using (3.16) we can find R;eC®(0,#(U)) (after shrinking @ and U) so that
9; Ry(2,2,w) = 0, H (z,Z,w). Now if we take

l r
Kj=H;— R+~ Zl R,
K=

then K is holomorphic in #'; and h= ZbK,.
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(3.18) Remark. Theorem 3 is a generalization of Theorem IL3 of [6], where the
result is proved for the special case of an abelian group G. The result is false for
general embedded CR manifolds, as was first shown by an example of Trépreaun
[13] (see also [5].) Also note that the mini-FBI transform defined by (3.5) and
(3.8) differs, in the non-abelian case, with the one used in [3] for general generic
submanifolds in C**%
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