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-§ 0. Introduction.

This paper deals with unique continuation of holomorphic functions at boundary
points. Our first result (Theorem 1) shows that if 4 is a holomorphic function in a neigh-
borhood of 0 in the complex upper half plane, continuous up to the boundary, vanishing of
infinite order at 0, and mapping the reals into a balf space, then i must vanish identically.

Theorem 1 is then used to sharpen and simplify previous results of unique continuation
in complex analysis. In a joint work with Alinhac (2}, the authors showed that any vector
valued holomorphic function in & neighborhood of 0 in the complex uppef half plane,
continuous up to the boundary, vanishing of infinite order at 0, and mapping the reals
inte M, a totally real manifold in C" of class C?, must vanish identically. (See also
Bell-Lempert [3] for a different proof.) In recent work, Huang and Krantz [6] were able
to weaken the assumption in the result above by replacing C? by CY* with « > 0. Our
Theorem 2 deals with a holomorphic vector valued function mapping the reals into a subset
of C™ of the form {|9z| < fIRz|} with0 < § < 1. As a consequence (see Corollary (2.4)),
we obtain a very simple proof of the unique continuation result mentioned above when the
totally real manifold M is only of class C. (In particular this gives a completely different
proof of a result of Alexander [1] when M is a C? curve.) Using a classical theorem of
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Dirichlet, we show (Theorem 3) that unique continuation also holds when the function h
maps the reals into a subset of the plane concentrated near finitely many rays.

We also give applications of Theorem 3 to the case where the holomorphic function &
defined in a neighborhood of 0 in the upper half plane maps the reals into a real analytic
subset of the plane. In this case, we first show (Theorem 4) that if h vanishes of infinite
order at 0, then it must vanish identically. Then, in Theorem 5, we show that if h is of
class C* up to the boundary, it extends holomorpically across the real line. Note that if
the real analytic set is a (smooth) real analytic curve, and hence can be mapped by & local
biholomorphism, into the real line, then the latter result follows from the classical Schwarz
reflection principle.

For the proof of Theorem 1 we have borrowed some ideas from the proof of Theorem
3.4in [6], which deals with unique continuation of smooth functions mapping the reals into
a positive hypersurface in C™.

§1. Unique continuation for holomorphic functions mapping the real line into

a half plane.

Let © C C be a connected open neighborhood of 0. Denote by Q* (resp. ) the
set of points z €  with Sz > 0 (resp. 9z > 0). For ¢ € L*(R), we denote by K(¢) the
Hilbert transform of ¢ given by

.1 dlz-v)
1.1 Ké(z) = lim - / ———ldy.
(L) o) =lim | EE Ly
THEOREM 1. Let h be a continuous function in ﬁ*, holomorphic in Q1 satisfying the
following properties:
( i) h vanishes of infinite order at 0, i.e. for every N there exists Cn such that

i) < Cnlel, zeqt
( §)Rh(z) 20, z€ANR.
Then h =0 in O+,

PROOF. We write h(z) = u(z) + iv(z), where © and v are real valued. Without loss
of generality, we may assume that QN R is an open interval I = (—r,r). Let x € C3°(1)
with x(z) =1 for |z] < §, and 0 < x(%) < 1. For x € I we write
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(1.2) x(2)h(z) = x(z)u(z) +ix(z)v(z) = f(z) + ig(z),

where f and g are continuous with compact support and real-valued. Note that by the
bypothesis f and g vanish of infinite order at 0, and £ is nonnegative.

We need the following lemmas.
Lemma (1.3).  With the notation (1.1) and (1.2), for every n = 0,1,2,... the function

(1.4) oa(z) = 9(z)z™" - K(f(y)y~")(z)

is real analytic in an open neighborhood of 0 in R , and hence the function K (f(y)y~")(z)
is continuous in the same neighborhood.

PROOF.  First note that for any n, f(z)z™ is continuous with compact support in
R, and hence is in L*(R). Therefore, K (f(y)y™")(z) € L*(R) (see e.g. [8]). On the other
hand, the function f(z)z~" + iK(f(y)y~")(z) € L*(R) has a holomorphic extension to
the upper half plane C* given by

z

(1.5) ka(2) = n / 7 (z:))zm P
Note also that the function p(z) = f(z)z™"+iK(f(¥)y™)(z) =x(z)h{z)z™™ extendsto a
holomorphic function in the upper half space near z = 0 and is purely imaginary for z € R
near 0, since X = 1 near 0 and k(z)z™ extends holomorphically to 2+. Hence, by the
Schwarz reflection principle, pa(z) extends holomorphically to a full neighborhood of 0 in
C. Since an(z) = —Qpa(z) it follows that an(z) is real analytic (and therefore continuous)
in a neighborhood of 0 in R . Since g(z)z™™" is continuous, so is K(f (»)y~)(z), which
proves the lemma.

LEMMA (1.6). If a(z) and a(z)z™! are both continucus with compact support on R,
then

an K@@+ 7 [ By~ ox2Wy)
where the equality is in the sense of L? functions.

PrROOF. Using definition (1.1) of X, we write

(18)  Kie)a)+~ f"’(”)d Y o) 4, /' o) g

‘7""0 lz=yl>e (z y) z—y|>e y

Since (z - )~ +y~! = 2y~ (z - y)~, the right hand side of (1.8) becomes
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1.9 / _al) 1 hm/ a(y) d=1{°—(y2 .
* "H A e Lt M 2 LI
This proves the lemma.é

‘We may now complete the proof of Theorem 1. If f(z) and g(z) are defined by (1.2),
we obtain from Lemma (1.6) applied to a(z) = f(z)/="

Wi K(f_;‘!{_l)(z)_,,i f I8 4 o 2 ie( L0 o),

yn-l-l n+l

for n =0,1,2,.... Let a(z) = ao(z) be given by (1.4). Since a(z) is real analytic near 0
by Lemma (1.3), there exists C > 0 such that

(1.11) [a9(0)/] < CFH, j=0,1,2,....
We shall first show
(L12) a9 (0)/1 = / I8 4y, i=012,.

For this, we begin with (1.4) with n = 0 and successively use (1.10) to obtain for n =
0,12,...,

(1.13) a(z) = x(z)e(z) + %ij( / ;(ﬂd )<~ "+'K(f,f}j), @).
=0

Since g(z) vanishes of infinite order at 0, and K (-VL,SR-)(z) is continuous near 0 by Lemma
{1.3), (1.12) follows from (1.13).

Recall, by the assumption of the theorem, that f is nonnegative. We now claim
that f vanishes identically in an open interval containing lO, which will imply the desired
_ conclusion of the theorem. For this, assume by contradiction that for every positive ¢ we
have

(1.14) _ Fdy > 0.

From (1.11) and (1.12) we obtain for every j odd,

(1.15) ci¥t > 5 ;',‘1’24 ,+1 f J)ay,
which implies

(116) 2L [ s o,
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Using (1.14) and letting j go to infinity, we obtain C > 1/e. Since ¢ is an arbitrary positive

number, we reach a contradiction. The proof of Theorem 1 is now complete. &

REMARK (1.17). Note that if in Theorem 1, (ii) is replaced by the stronger condition
Rh(z) >0for z € §*, then the conclusion of the theorem follows from the classical Hopf
Lemma.

§2. Applications of Theorem 1.

In this section we shall give a number of applications of Theorem 1 to unique contin-
uation of flat functions in other settings.
THEOREM 2. Let 2 C C be a connected open neighborhood of 0. Suppose that H :
Tt ocris continuous, holomorphic in *, and vanishes of infinite order at 0, i.e. its
components satisfy (i) of Theorem 1. If H satisfies

(2.1) H(QNR)C {z€C": |9z < fiRz|}
for some 8 with 0 < 8 < 1, then H =0. Ifn =1 the conclusion holds for B =1 also.

PROOF. We write H = (H, ..., H,) with Hj = uy 4 iv; , where the u; and v; are
real. By the hypothesis (2.1), we have

(2.2) vl <8 uiz)?, zeank
3 3

Then the function h = Hf + ... H2 satisfies the hypotheses of Theorem 1, since Rh =
¥, ui(x)? - i:, v5(x)? 2 0. We may then conclude h = 0, which implies in particular,
2 ;u35(z)* = T; v5(z)*. Combining this with (2.2) and noting that # < 1 , we obtain
¥; u5(z)? = 0, which implies u;(z) = v;(z) = 0 for all j, ie. H =0. )

If n=1and § =1, then we note that H? = u? — v? 4 2iuv satisfies the hypothesis of
Theorem 1, and we conclude immediately that H =0. &

REMARK (2.3).  The conclusion of Theorem 2 need not hold for n > 1 and A = 1. Indeed,
let H, :TI" = C be a continuous function, holomorphic in %, vanishing of infinite order
at 0, but with Hy # 0. Then H = (H),iH)), valued in C?, satisfies (2.1) with 8 = 1, but
H#o.

COROLLARY (2.4). If H is as in Theorem 2, but with (2.1) replaced by

(2.5) HQNR) c M,
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where M is a C* totally real submanifold of C*, thea H = 0.

PROOF. As in {2, Lemma (1.1)], we may find local holomorphic ccordinates z =
(z',2") € C" x C"~7 such that M is given near 0 by

(26) 8z’ = ¢(R2), 2" =4(R),

with ¢ and ¢ of class C! defined near 0 in R, with ¢(0) = 0, ¥(0) = 0, dé(0) = O,
dp(0) = 0. It then follows immediately that near 0, M is contained in a sct of the form
(2.1) with g < 1, hence the corollary. &

The following corollary is immediate, since any C? curve in C™ is a totally real man-
ifold.

COROLLARY (2.7). If H is as in Theorem 2, but with (2.1) replaced by H(Q NR)
-contained in a C! curve of C*, then H =0.

This corollary is generalized in Theorem 3 below to the case where a single C*! curve
in C" is replaced by a finite union of such curves.

For the next application, we introduce a class of subsets of the complex plane. Let o
be a real number and R the ray defined by R= {z € C: z =re?™@, 0 £ r < 00}. A set
will be called a single ray concentrated around R if it is of the form

(2.8) , Ep={2€C:2=re"%, |9 - o] <w(r)},

where w(r) is a nonegative function defined for r > 0 and such that lim,ow(r) =0. A
subset E of C is called ray concentrated around the rays Ry,..., Ry if
k
2.9) E=|] Er,
=1

where Egp, is a single ray concentrated set around R;. In particular, a C! curve passing
through 0 is ray concentrated around its tangent line at 0 and, more generally, a finite
union of such curves forms a ray concentrated set. The reader can also easily check that if
g is a positive integer and H(z) = z7? then the image under H of a ray concentrated set is
also a ray concentrated set. We give now the main property of these sets of interest to us.
LEMMA (2.10). Let E be a ray concentrated set given by (2.9). There exists a positive

integer ¢ and ¢ > 0 such that if H(z) = 29, then H(E) N {|2| < €} is contained in the half
space {Rz 2 0}.
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PRrOOF. By the classical Dirichlet theorem (sce e.g. {5, Theorem 201] ) for every set
of real numbers qy,...,ax and every positive integer v there exist a positive integer ¢ and
integers py,. - ., px such that

(2.11) lga; — p;| < 1/v.

Now, for j =1,...,k, let 2wa; be the angle associated to R; by (2.8), a.ﬁd choose v > 4. If
¢ satisfies (2.11) and H(z) = 29, then all the rays R = H(R;) lie in the set {Rz > 0}u{0}.
Since H(E) is a ray concentrated set around R}, ..., R} , the lemma follows by takinge > 0
sufficiently small. &

With the above notions, we have the following.

THEOREM 3. Let h be a continuous function in ﬁ*, holomorphic in Q* and vanighing
of infinite order at 0. If

(2.12) hQNR) CE,

where E is a ray concentrated set, then k = 0. In particular, the conclusion holds if E Is
a finite unjon of C! curves through 0.

PROOF. Let ¢ be the positive integer given by Lemma (2.10). After shrinking 9
around 0 if necessary, it follows from the lemma that the function k9 satisfies the assump-
tions of Theorem 1, hence the desired conclusion. &

3. A Schwarz reflection principle for real analytic sets.

Bya real analytic set in C we mean the locus of zeroes of a real valued real analytic
function defined in an open set in C . We have the following results.
THEOREM 4. Let h be a continuous function in 71, holomorphic in *, and vanishing
of infinite order at 0. If H(RNR) is contained in a real analytic subset of C,thenh=0.

THEOREM 5. Let h be a smooth function in ?!_", holomorphic in *, mapping QNR into

a real analytic subset of C; then h extends holomorphically to an open neighborbood of
fi"timc.

REMARK (3.1).  The conclusion of Theorem 5 need not hold if £ is only assumed to be
of class C, even if k Is taken to be large, as shown by the following example. Let k be
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any positive integer and h(z) = z*+1/2 where the square root is defined to be holomorphic
in the upper half plane. Then A(R) C A where A is given by zy = 0. Clearly & does not
extend holomorphically to any neighborhood of 0 and & is of class C* in the half plane
§z2>0.

PROOF OF THEOREM 4. We shall show that a real analytic set is a ray concentrated
set as defined in §2 (see (2.9)). Theorem 4 will then follow immediately from Theorem 3.
Let A be a real analytic set. By the Weierstrass Preparation Theorem, and after a
complex linear change of coordinates in C , we can assume that near the origin A is given
by
N-1

(32) v+ ) a5z =0,

=0
where z = z+ iy and the a; are real valued, real analytic functions vanishing at 0. By the
classical Puiseux expansion of the roots of (3.2), we conclude that there exist at most 2NV
curves v; : [0,1] — R? of class C? with 4;(0) = 0 and 7}(0) # 0 such that for e sufficiently
small

k
(3:3) An{|z] < &} = | J % (0, 1)).
=1

If we take R; = {(tv}(0); ¢ = 0)}, the set A is then ray concentrated around Ry, ..., Ri.#

PROOF OF THEOREM 5. It suffices to show that A extends holomorphically to a full
neighborkood of 0 in C . By Theorem 4, if h vanishes of infinite order at 0, then A =0
and the above conclusion follows trivially. Hence we may assume that ?:54,.(0) # 0, where
n is minimal with this property. We claim that

(3.4) h(2) = z"a(z),

where a{z) is smooth in ﬁ_", holomorphic in 2+ and a(0) # 0. Indeed, the holomorphic
function h(z)/z" in Q% has a boundary value distribution in @ N R since |A(z)/z"| <
C(Qz)~" in QF (see e.g. {4]). On the other hand h(z)/z" is smooth in R NR by the
Taylor expansion of h(z), and the choice of n . By the regularity of the Poisson transform
(see e.g. [8]), it follows that h(2)/z" is smooth in 1%, and its boundary value is h(z)/z".
This proves the claim (3.4).

After shrinking € around 0, if necessary, we let f(z) = z[a(z)}'/", where the nth root
is chosen so that a(z)!/® is smooth in $T* and holomorphic in 2+, Then f* = h, and
hence by the assumption of the theorem, {f*(2NR)] C A, where A is an analytic set, i.e.
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A is given near 0 by A = {g(z,y) = 0}, with g(z, ) a real valued, real analytic function in
a neighborkood of 0. If we let B be the real analytic set given by g(®z",9z") =0, then,
after possibly shrinking 2, we have

(3.5) f@NR)CB.

Since £'(0) # O, there is an open interval I C QNR, 0 € I, such that £(I) is a smooth curve
which is contained in B by (3.5). We claim that since B is a real analytic set, f (1) must be
a real analytic (smooth) curve. Indeed, the claim follows from a theorem of Malgrange (7,
since both B and £(J) are of real dimension 1. (Note that this can also be seen by writing
the equation for B in the form (3.2) and using the Puiseux expansion for the roots.) The
classical Schwarz reflection principle then implies that f extends holomorphically to a full
neighborhood of 0 in C . Hence the same holds for k, which proves Theorem 5.4
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