Chapter 0, Problem 20

Let p_{1}, \ldots, p_{n} be a collection of primes. We must show that p_{i} does not divide $p_{1} \ldots p_{n}+1$.

Method 1: Proof by contradiction

Suppose p_{i} divides $p_{1} \ldots p_{n}+1$. Then by definition,

$$
p_{1} \ldots p_{n}+1=m p_{i}
$$

for some integer m. Note that $p_{1} \ldots p_{n}$ itself is divisible by p_{i}. We can see this by factoring out p_{i} :

$$
p_{1} \ldots p_{n}=\left(p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n}\right) p_{i}
$$

Before continuing, we should note that p_{i} does not divide 1.
Now let us arrive at a contradiction. Subtract the second equation from the first:

$$
\begin{gathered}
p_{1} \ldots p_{n}+1-p_{1} \ldots p_{n}=m p_{i}-\left(p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n}\right) p_{i} \\
1=\left(m-p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n}\right) p_{i}
\end{gathered}
$$

This means that p_{i} divides 1 , which is a contradiction. So p_{i} does not divide $p_{1} \ldots p_{n}+1$.

Inspiration for proof: p_{i} divides $p_{1} \ldots p_{n}$. Can p_{i} also divide the next consecutive number? What would happen if it did?

Method 2: Division Algorithm

Let us apply the division algorithm on $p_{1} \ldots p_{n}+1$ with $a=p_{1} \ldots p_{n}+1$ and $b=p_{i}$:

$$
p_{1} \ldots p_{n}+1=\left(p_{1} \ldots p_{i-1} p_{i+1} \ldots p_{n}\right) p_{i}+1
$$

We see that dividing $p_{1} \ldots p_{n}+1$ by p_{i} will result in a remainder of 1 . Therefore, it is not divisible by p_{i}.

Inspiration: $p_{1} \ldots p_{n}+1$ already looks like the right side of the division algorithm. We just need to factor out p_{i}.

Chapter 0, Problem 32

Method 1: Induction on n (note: this only proves the problem for positive integers)

Base case $n=1: 1^{3} \bmod 6=1 \bmod 6$
Suppose the statement is true for $n=k: k^{3} \bmod 6=k \bmod 6$ (this is also known as assuming $P(k)$).

We will show that this implies the corresponding equality with $n=k+1$ is true (we prove $P(k+1)$):

On the left, we start with

$$
(k+1)^{3} \bmod 6
$$

We do not know if this is $k+1 \bmod 6$ yet, so don't set it equal yet! But we can expand:

$$
=k^{3}+3 k^{2}+3 k+1 \bmod 6
$$

$k^{3} \bmod 6=k \bmod 6$, so we can replace the k^{3} by k :

$$
\begin{gathered}
=k+3 k^{2}+3 k+1 \bmod 6 \\
=(k+1)+3 k^{2}+3 k \bmod 6
\end{gathered}
$$

We want $k+1$ by itself. To do this, we must show that $3 k^{2}+3 k \bmod 6=0 \bmod 6$. In other words, we must show that $3 k^{2}+3 k$ is divisible by six. Let us use induction again:

Base case $k=1: 3\left(1^{2}\right)+3(1)=6$ which is divisible by 6 .
Suppose $3 j^{2}+3 j$ (we need a different variable) is divisible by 6 . We need to show that $3(j+1)^{2}+3(j+1)$ is divisible by six.

$$
3(j+1)^{2}+3(j+1)=\left(3 j^{2}+6 j+3\right)+(3 j+3)=3 j^{2}+3 j+6 j+6
$$

By the inductive hypothesis, $3 j^{2}+3 j$ is divisible by six. $6 j+6=6(j+1)$ is also divisible by six, so the sum is divisible by six. This proves the inductive step. So $3 k^{2}+3 k$ is divisible by six for any positive integer k.

Note: you can also factor $3 k^{2}+3 k$ as $3 k(k+1)$ and either use induction, or point that since either k or $k+1$ is divisible by 2 , and $3 k(k+1)$ is divisible by $3,3 k(k+1)$ must also be divisible by $2 \cdot 3=6$. If you try induction and get stuck, expand $3(j+1)(j+2)$ as $3(j+1) j+3(j+1) 2$.

Now let us resume the original induction:

$$
\begin{gathered}
(k+1)^{3} \bmod 6=(k+1)+3 k^{2}+3 k \bmod 6 \\
=(k+1)+0 \bmod 6 \\
=(k+1) \bmod 6
\end{gathered}
$$

which is what we wanted to show. Therefore, by induction, for any positive integer $n, n^{3} \bmod 6=n \bmod 6$.

Method 2: Divisibility by 2,3, and 6, and Consecutive Integers

Before we start, let us look at the assertion: $n^{3} \bmod 6=n \bmod 6$. This is equivalent to $n^{3}-n \bmod 6=0 \bmod 6$, which by definition means that $n^{3}-n$ is divisible by six. So we will prove that instead.

We can factor $n^{3}-n$ as $n\left(n^{2}-1\right)=n(n-1)(n+1)$. Rearrange the factors in order:

$$
(n-1)(n)(n+1)
$$

Now we can determine divisibility by 6 . We can split this into two steps:
Step 1: Divisibility by 2
We only need to know if one of the three factors is even. This is guaranteed, because either $n+1$ is divisible by 2 , or if not, then $n+1$ has a remainder of 1 when dividing by 2 , but that would mean n itself is divisible by 2 . Since one of the factors is divisible by 2 , the entire product must be divisible by 2 .

Step 2: Divisibility by 3
Intuitively, if we have three consecutive numbers, one of them is divisible by 3. Either $n+1$ is divisible by 3 , or it has a remainder of 1 or 2 , in which case n or $n-1$ is divisible by 3 . Thus, the entire product is divisible by 3 .

Since $n^{3}-n=(n-1)(n)(n+1)$ is divisible by 2 and 3 , it must also be divisible by 6 , which is what we wanted to show.

Method 3: Reduction to six cases

Let $r \in\{0,1,2,3,4,5\}$ (the possible remainders when dividing by 6). If $n \bmod 6=$ $r \bmod 6$, then $n^{3} \bmod 6=r^{3} \bmod 6$, so if we can show

$$
r^{3} \bmod 6=r \bmod 6
$$

for all possible values of r, we can then conclude

$$
n^{3} \bmod 6=r^{3} \bmod 6=r \bmod 6=n \bmod 6
$$

for any integer n.
A direct calculation for each value of r will suffice:

$$
\begin{gathered}
0^{3} \bmod 6=0 \bmod 6 \\
1^{3} \bmod 6=1 \bmod 6 \\
2^{3} \bmod 6=8 \bmod 6=2 \bmod 6(6+2) \\
3^{3} \bmod 6=27 \bmod 6=3 \bmod 6(24+3) \\
4^{3} \bmod 6=64 \bmod 6=4 \bmod 6(60+4) \\
5^{3} \bmod 6=125 \bmod 6=5 \bmod 6(120+5)
\end{gathered}
$$

Note: When choosing values of r, any six integers that are not equal to each other $\bmod 6$ will do. A good alternative choice is $r \in\{-2,-1,0,1,2,3\}$.

