
HOMEWORK 2 SOLUTIONS TO SELECTED PROBLEMS

Chapter 0, Problem 18. To simplify 8402 mod 5, we �rst look for a power of 8
which is equal to either 1 or −1 mod 5.

82 mod 5 = 64mod 5 = −1mod 5

Thus, we have

8402 mod 5 =
(
82
)201

mod 5 = (−1)201 mod 5 = −1mod 5 = 4mod 5

We could also replace 8 by 3, since 8mod 5 = 3mod 5, and 32 mod 5 = 9mod 5 =
−1mod 5.

Additional example: What if we had 8403 mod 5? There is no integer n such that(
82
)n

= 8403. However, we can use another property of exponents:

8403 = 8402+1 = 8402 · 81

Now we can use the previous method on the 8402 factor:

8403 mod 5 = 8402 · 8mod 5 = (−1)201 · 8mod 5 = 2mod 5

Chapter 0, Problem 26. Suppose p is a prime that divides a1 . . . an. We wish to
show that it divides at least one of the factors ai for some i. We can use Euclid's
lemma along with associativity to break this product of n numbers:

(a1)(a2 . . . an)

Remember: in the statement of Euclid's lemma, a and b do not have to be prime.
Let us use that lemma with a = a1 and b = a2 . . . an. Then p divides a1 or p divides
a2 . . . an. If p divides a1, we are done. Otherwise, p divides a2 . . . an. We break
that up as

(a2)(a3 . . . an)

and use Euclid's lemma again (but with a = a2 and b = a3 . . . an): either p divides
a2 or p divides a3 . . . an. If p divides a2, we are done. Otherwise, we continue in
the same pattern. No matter what, this process will end (the worst case scenario
is that p divides an−1an, but then it must divide an−1 or an), and p must divide
one of the factors ai for some i.

Warning on using induction: In general, you want to stay away from induction
if the variable you use for the induction step is an indexing variable (these tend
to show up as subscripts). For example, if you wanted to use induction on this
problem, the inductive step is NOT �Suppose if p divides a1 . . . an, then p divides
ai for some i. Now suppose p divides a1 . . . an+1 . . .� because the a's used for the
statement with n may not the same a's that appear for n+1. For another example,
consider problem 20 from chapter 0. An inductive step would say �Suppose none of
p1, . . . , pn divides p1 . . . pn+1.� This tells us nothing about pn+1 and p1 . . . pn+1+1
(and again these p's may not be the same ones from the beginning of the inductive
step), so the inductive proof would get stuck.
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Chapter 0, Problem 54. If a and b are integers, de�ne a relation aRb if a+ b is
even. Let us show that this is not just any relation, but an equivalence relation.

(1) Re�exive property: We need to show that aRa. Unlike the symmetric and
transitive properties, we DO NOT ASSUME anything when proving the
re�exive property and use only the de�nition of the relation.
Here, we need to verify that a+ a is even for any integer a. But a+ a = 2a
which is a multiple of 2, so aRa.

(2) Symmetric property: We assume that aRb and prove bRa. In this case, we
suppose a + b is even. Since a + b = b + a, if follows that b + a is even as
well. Hence bRa.

(3) Transitive property: We assume two things, aRb and bRc, and prove aRc.
That is, a+b and b+c are even, and we need to prove a+c is even. Suppose
a + b = 2r and b + c = 2s for integers r and s. If we add these equations,
we get

a+ b+ b+ c = 2r + 2s

Subtract 2b from both sides:

a+ c = 2r + 2s− 2b = 2(r + s− b)

so a+ c is even, and hence aRc.

By de�nition, an equivalence class of an integer a is

[a] = {b ∈ Z | aRb} = {b ∈ Z | a+ b is even}
Let us start with zero:

[0] = {b ∈ Z | 0 + b is even}
If 0 + b is even, then b itself must be even, so

[0] = {b ∈ Z | b is even}
That is, one equivalence class is the set of even numbers. To �nd other equivalence
classes, we pick a number that is not in [0], like 1:

[1] = {b ∈ Z | 1 + b is even}
If 1 + b is even, then b itself must be odd, so

[1] = {b ∈ Z | b is odd}
Thus, another equivalence class is the set of odd numbers. Since every integer is
even or odd, this means that there are no other equivalence classes to search for.

Chapter 1, Problem 6. Given a regular n-sided polygon, we can label one of the
corners as �1� and count the rest. To do so, we need to decide whether we count
up counter-clockwise or clockwise. The choice we make is an orientation of the
polygon.

With this de�nition, we can describe all rotations of the polygon as �orientation-
preserving,� because they do not change the orientation. For example, if our labels
on the polygon started o� clockwise, and we did any rotation, �1� may be in a
di�erent place, but our labels would still go up in the clockwise direction. On the
other hand, all re�ections of the polygon are �orientation-reversing.� For example,
if the labels went up clockwise and we do any re�ection, the labels would now be
going counter-clockwise. With a starting orientation, we can identify any sequence
of motions (rotations and re�ections) as a single rotation or re�ection based on
whether we end up the same orientation or not. Remember: doing any sequence of
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motions is the same as doing a single motion. That is the whole point behind the
closure property of groups.

So if we do two or more motions, to determine of the overall result is a rotation
or a re�ection, we just need to choose an initial orientation and keep track of when
it changes. If we start o� clockwise and do two re�ections, the �rst one gives us a
counter-clockwise orientation, but the second re�ection puts us back in a clockwise
orientation, so the end result is a rotation. In general, if a have a sequence of
motions, you can count how many individual re�ections appear in the sequence. A
sequence with an even number of re�ections is the same as a single rotation, while
a sequence with an odd number of re�ections must be a single re�ection.

Example: if R represents any rotation and F represents any re�ection,

(1) RR is a rotation
(2) RF and FR are re�ections (they might not be equal)
(3) FRRRRFRRFFFR is a re�ection

Chapter 2, Problem 8. Here is the Cayley table for the proposed group:

× 5 15 25 35

5 25 35 5 15

15 35 25 15 5

25 5 15 25 35

35 15 5 35 25

We can use the table to check for these properties of a group: closure, identity,
inverses. The last property, associativity, cannot be checked with the table.

(1) Closure: To check this, we need to make sure that no new number (besides
the labels for the rows and columns) appears in the interior (the 4 × 4 in
the lower right corner) of the table. Here, we see that is the case.

(2) Identity: We can identify the identity element of the group by looking for
a row in the interior of the table which matches the column labels at the
top. In the problem, the row for multiplying by 25 matches the column
labels at the top, so 25 must be the identity. If you want to be careful, we
can look for a column in the interior which matches the row labels. We see
that it is the column for 25 as well.

(3) Inverses: To guarantee that every element has an inverse without having to
manually �nd the pairs, we can check if every row and every column in the
interior of the table has the identity element. Here, we see that 25 appears
in every row and column. For example, it appears in row 5, column 5, so
this tell us that 5 is its own inverse:

5× 5mod 40 = 25mod 40

(4) Associativity: The table will not help us, but in this problem, we do not
need to check, because we know that multiplication mod 40 is associative
already.

For comparison, here is the Cayley table for U(8) = {1, 3, 5, 7}:
× 5 7 1 3

5 1 3 5 7

7 3 1 7 5

1 5 7 1 3

3 7 5 3 1
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If we match up the elements between the set {5, 15, 25, 35} and U(8) as follows:

5↔ 5

15↔ 7

25↔ 1

35↔ 3

we see that the Cayley tables line up. So aside from di�erent numbers, our group
{5, 15, 25, 35} and U(8) have the �same� multiplication. This matching is an exam-
ple of an �isomorphism� (derived from Greek for �same form�). It means that the
groups may look di�erent, but they behave the same.

Bonus: Chapter 2, Problem 5. Let us �nd the inverse of

[
2 6
3 5

]
in GL(2,Z11).

This is a matrix A in GL(2,Z11) such that[
2 6
3 5

]
A =

[
1 0
0 1

]
mod 11

Let us try the normal matrix inverse:

A =
1

(2)(5)− (6)(3)

[
5 −6
−3 2

]
=

1

−8

[
5 −6
−3 2

]
What does it mean to divide by −8 mod 11? Remember that Z11 is a group under
multiplication, so dividing by −8 mod 11 is the same as multiplying by the inverse
of −8 in Z11. Since −8mod 11 = 3mod 11, we need to �nd the inverse of 3 mod 11.
Since 3× 4mod 11 = 12mod 11 = 1mod 5, we have that the multiplicative inverse
of 3 and -8 in Z11 must be 4. Thus,

A = 4

[
5 −6
−3 2

]
=

[
20 −24
−12 8

]
Let us reduce mod 11:

A =

[
9 9
10 8

]
Check: [

2 6
3 5

] [
9 9
10 8

]
=

[
34 66
77 67

]
mod 11 =

[
1 0
0 1

]
mod 11


