
HOMEWORK 4 SOLUTIONS TO SELECTED PROBLEMS

1. Chapter 3, Problem 18 (Graded)

Let H and K be subgroups of G. Then e, the identity, must be in H and K, so it
must be in H ∩K. Thus, H ∩K is nonempty, so we can use either Theorem 3.1 or
Theorem 3.2 (the one-step and two-step subgroup tests). Be careful: before you can

use the subgroup tests, you must show that the proposed subgroup is nonempty.

This usually requires you to show that e is in the set.

1.1. Using the One-step Subgroup Test. Let a and b be elements of H ∩K.
Then a and b are in H, so ab−1 ∈ H since H is a subgroup of G. Also, a and b are
in K, so ab−1 ∈ K. Hence ab−1 ∈ H ∩K, and therefore, H ∩K is a subgroup of G.

1.2. Using the Two-step Subgroup Test. Let a and b be elements of H ∩K.
Then a and b are in H, so ab ∈ H and a−1 ∈ H since H is a subgroup of G. Also,
a and b are in K, so ab ∈ K and a−1 ∈ K. Hence ab ∈ H ∩K and a−1 ∈ H ∩K,
and therefore, H ∩K is a subgroup of G.

1.3. Intersections of More Than Two Subgroups. Note that both proofs gen-
eralize to intersections of any number of subgroups. No matter what, we need to
show e is in the intersection (which is true since it is in every subgroup) and when
using the subgroup tests, we only look at two elements a and b in the intersection
and use the fact that a and b are in each of the subgroups.

2. Chapter 3, Problem 20 (Graded)

Let z ∈ C(a). Then
za = az

We want a similar equation, but with a replaced by a−1. Multiply both sides by
a−1 on the left:

a−1za = a−1az

a−1za = z

Multiply both sides by a−1 on the right:

a−1zaa−1 = za−1

a−1z = za−1

In other words,

za−1 = a−1z

Thus, z commutes with a−1, so for any element a ∈ G, C(a) ⊆ C(a−1).
In particular,

C(a−1) ⊆ C((a−1)−1) = C(a),

so C(a) = C(a−1).
Alternatively, to prove C(a−1) ⊆ C(a), you could start with z ∈ C(a−1):

a−1z = za−1
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and multiplying both sides by a on the left, then multiplying both sides by a on
the right to get

za = az.

3. Chapter 3, Problem 24 (Not Graded)

Let us use the contrapositive: let a and b be two (possibly equal) elements of a
group, and suppose a2 = b2 and a3 = b3. We need to show that a = b. Remember
that the negation of an �or� statement is an �and� statement.

Since a2 = b2, we can take the inverse of both sides to get

a−2 = b−2.

Since a3 = b3, we will multiply the left side of the above equation by a3 and the
right side by b3:

a−2(a3) = b−2(b3)

a1 = b1

Hence a = b.

4. Chapter 3, Problem 32 (Not Graded)

First, since n is even, in Zn,

(1) An odd number plus an odd number is even (even if we need to reduce mod
n).

(2) An odd number plus an even number is odd.
(3) An even number plus an even number is even.

This is because in order to determine the remainder mod n, we subtract a multiple
of n from the sum. See the division algorithm on page 3 of the textbook with the
sum as a, and q = n. Since n is even, a − bn and a are either both odd or both
even.

Let H be a subgroup of Zn. Note that 0, the identity element, is in H. Now,
either H has no odd elements, or H has at least one odd element. If H has at least
one odd element, we need to prove that the number of odd elements in H equals
the number of even elements (and hence half of the elements of H are even).

Since H has at least one odd element, let us call it a. Suppose there are j odd
elements in H (including a) and there are k even elements in H (including 0).

Write the odd elements as

a = g1, g2, . . . gj .

What happens if we add a to each of these?

g1 + a, g2 + a, . . . , gj + a.

Note that these are j distinct elements: if gr + a = gs + a, then by canceling a,
we get gr = gs. Furthermore, all j of them are even (since all of them are an odd
number plus an odd number). Most importantly, all of them are in H, since H is
a subgroup and hence is closed. So

g1 + a, g2 + a, . . . , gj + a

is a list of j distinct even elements in H. But it might not be all of them. Could
there be even numbers in H which are not equal to a plus some odd number in H?
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Still, at least we can say that j out of k even elements in H can be written as an
odd element of H plus a. Hence

j ≤ k.

Write the even elements as

0 = h1, h2, . . . , hk.

Let us add a to each of these:

h1 + a, h2 + a, . . . , hk + a.

Again, these are k distinct elements of H, and all of them are odd (even plus odd
is odd). But there may be odd numbers in H which cannot be written as a plus an
even number in H, so

k ≤ j.

Therefore, j = k. That is, the number of odd elements in H equals the number of
even elements in H.

5. Chapter 3, Problem 60 (Graded)

Let G be a �nite group with more than one element. Then there is an element
a ∈ G with the following properties:

(1) a 6= e
(2) |a| is �nite (since |G| is �nite)
(3) |a| > 1 since a 6= e

Let n = |a|. Then n > 1, an = e and am 6= e for any integer 1 ≤ m < n.
The problem is that n might not be prime. But what will happen is that we will

�nd a power of a which will have prime order.
Since n > 1, we can factor n as a product of primes:

n = p1p2 . . . pk−1pk.

Then

a(p1p2...pk−1pk) = e

5.1. Using Theorem 4.2. We can use Theorem 4.2 to determine the order of
a(p1p2...pk−1): ∣∣∣a(p1p2...pk−1)

∣∣∣ = |a|/gcd (|a|, p1p2 . . . pk−1)
|a|/gcd (|a|, p1p2 . . . pk−1) = n/gcd(n, p1p2 . . . pk−1) = n/ (p1p2 . . . pk−1) = pk.

Hence ∣∣∣a(p1p2...pk−1)
∣∣∣ = pk,

so a(p1p2...pk−1) is an element with prime order pk.
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5.2. Without Theorem 4.2. We have(
a(p1p2...pk−1)

)pk

= a(p1p2...pk−1pk) = e,

so ∣∣∣a(p1p2...pk−1)
∣∣∣ ≤ pk.

Let q be an integer with 1 ≤ q < pk. We need to show that(
a(p1p2...pk−1)

)q
6= e.

Since 0 < p1p2 . . . pk−1q < p1p2 . . . pk−1pk, we know

a(p1p2...pk−1q) 6= e.

Thus, (
a(p1p2...pk−1)

)q
= a(p1p2...pk−1q) 6= e,

and therefore, ∣∣∣a(p1p2...pk−1)
∣∣∣ = pk,

so a(p1p2...pk−1) is an element with prime order pk.

6. Chapter 4, Problem 22 (graded)

Let G be a group with three elements. One of them is the identity, e. Let us call
the other two elements a and b. To prove that G is cyclic, we need to show that
G = 〈a〉. (We could also show G = 〈b〉 as well. It turns out that 〈a〉 = 〈b〉 in this
problem).

Let us �ll out a Cayley table. We can �ll in the rows and columns for e �rst:

× e a b
e e a b
a a ? ?

b b ? ?

Right now, we have G = {e, a, b} and 〈a〉 =
{
a, a2, . . .

}
. We need to prove that

a2 = b and a3 = e in order to show G = 〈a〉.
First, we have ae = a according to the Cayley table. Hence a2 6= a (each element

can only appear once in each row and column of the interior of the Cayley table)
and ab 6= a. We also have ab 6= b (b cannot appear twice in the same column).
Hence ab = e. Similarly, ba 6= b and ba 6= a, so ba = e:

× e a b
e e a b
a a ? e
b b e ?

We can �ll in the remaining entries since each element can only appear once in
each row and column of the interior of the Cayley table:

× e a b
e e a b
a a b e
b b e a

Hence a2 = b, so a3 = a · a2 = ab = e. Therefore, G = 〈a〉 =
{
a, a2, e

}
.
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7. Chapter 4, Problem 42 (Not Graded)

Let G be a group with in�nite order. If G has an element a of in�nite order,
then the subgroups 〈a〉,

〈
a2
〉
,
〈
a3
〉
,. . . are an in�nite collection of subgroups of G.

However, it is possible that every element of G has �nite order. We can proceed
by contradiction. Suppose that G has a �nite number of subgroups. Then it has
a �nite number of cyclic subgroups. Each cyclic subgroup has order equal to the
order of its generator (by Corollary 1, page 74), and since every element of G
has �nite order, this means that all the cyclic subgroups have �nite order (�nitely
many elements). So we have �nitely many cyclic subgroups of �nite order (basically,
what could happen is that even though G has in�nitely many elements, the cyclic
subgroups the elements generate may overlap with each other so much that there is
only �nitely many of them). Let m be the total number of distinct cyclic subgroups
(m <∞). Let n be the order of the cyclic subgroup with the largest order.

If a ∈ G, then a ∈ 〈a〉. Hence

G ⊆
⋃
a∈G
〈a〉 .

Therefore,

|G| ≤

∣∣∣∣∣ ⋃
a∈G
〈a〉

∣∣∣∣∣ ≤ m · n <∞.∣∣∣∣ ⋃
a∈G
〈a〉
∣∣∣∣ is bounded above by the number of cyclic subgroups (m) multiplied by

the size of the largest cyclic subgroup (n).
This contradicts the fact that G has in�nite order. Therefore, G has in�nitely

many cyclic subgroups (and hence in�nitely many subgroups).

8. Chapter 4, Problem 52 (Graded)

U(49) is a cyclic group with 42 elements. To determine the number of generators,
we must count the number of elements in U(49) whose order equals the order of
the group, 42. By Theorem 4.4, page 79, the number of elements of order 42 in a
cyclic group of order 42 is φ(42), the number of positive integers less than 42 and
relatively prime to 42.

8.1. The Function φ is Multiplicative in Certain Cases. Since 42 = 6 ·7, and
gcd(6, 7) = 1, φ(42) = φ(6) · φ(7) = 2 · 6 = 12. Thus, U(49) has 12 generators.

8.2. Listing the Numbers Coprime to 42. To determine which integers are
coprime to 42, �rst factor 42 as a product of primes. It helps to list the primes in
increasing order:

42 = 2 · 3 · 7
Now list the numbers from 1 to 41:

1 8 15 22 29 36
2 9 16 23 30 37
3 10 17 24 31 38
4 11 18 25 32 39
5 12 19 26 33 40
6 13 20 27 34 41
7 14 21 28 35
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First, cross out the numbers which are divisible by 2, the �rst prime which
divides 42. Then cross out the numbers divisible by 3, and then cross out the
numbers divisible by 7. The leftover numbers are coprime to 42. Count them, and
that is φ(42).

1 8 15 22 29 36

2 9 16 23 30 37
3 10 17 24 31 38

4 11 18 25 32 39

5 12 19 26 33 40

6 13 20 27 34 41
7 14 21 28 35

Leftovers: 1, 5, 11, 13, 17, 19, 23, 25, 29, 31, 37, 41

φ(42) = 12

Thus, U(49) has 12 generators. Beware, the leftover numbers are not necessarily
the generators!


