
Homework 6 Solutions to Selected Problems

March 16, 2012

1 Chapter 7, Problem 6 (not graded)

Note that
H = {bn : b ∈ Z} .

That is, H is the subgroup of multiples of n. To �nd cosets, we look for an
integer a that is not in H and add it to every element in H to get the coset
a +H (remember that the operation in Z is addition). For example, if n > 1,
then the coset 1 +H is

1 +H = {bn+ 1 : b ∈ Z} .

Hence 1 + H is the set of all integers congruent to 1 mod n. In general, let
0 ≤ r < n. Then every coset of H can be written as

r +H = {bn+ r : b ∈ Z} .

How do we know that this is all the cosets? We just need to make sure that
every integer is in one of these cosets. In this case, we can use the division
algorithm: given any integer a, there exists integers b and r with 0 ≤ r < n
such that

a = bn+ r.

Hence a ∈ r +H.

2 Chapter 7, Problem 22 (graded)

Let g ∈ H. We need to show that g ∈ K in order to prove that H ⊆ K. To
show that g ∈ K, we can try to write g as a product of elements in K.

We know that there are elements a and b such that

aH ⊆ bK.

Since g ∈ H, ag ∈ aH (remember that aH = {ah : h ∈ H}). Hence ag ∈ bK.
This means that there is an element k ∈ K such that

ag = bk.

Be careful: we do not know if g = k. We also do not know if a and b are in
either H or K, so let us try to get rid of a and b.
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2.1 Getting rid of a

Since e, the identity, is an element of H, we have that ae ∈ aH, so a ∈ aH.
Since aH ⊆ bK, a ∈ bK. This means that there is an element l ∈ K such that

a = bl.

Therefore, ag = (bl)g, so
ag = (bl)g = bk.

blg = bk.

2.2 Getting rid of b

Cancel b by multiplying on the left by b−1:

lg = k.

Solve for g:
g = l−1k.

Since l ∈ K and k ∈ K, l−1k ∈ K, so g ∈ K. Therefore, if g ∈ H, then g ∈ K,
so H ⊆ K.

3 Chapter 7, Problem 26 (not graded)

If G is cyclic, G would have at least one element of order 25. This is because if
G = 〈a〉, then by Corollary 1 on page 74, |a| = | 〈a〉 | = |G| = 25.

However, if G is not cyclic, it has no element of order 25 (in general if you
have a �nite group and an element with the same order as the group itself, then
the group is cyclic and that element is a generator for the group). In this case,
we need to show that g5 = e for every g ∈ G.

By Corollary 2 on page 142, if g ∈ G, then |g| divides |G|. That is, |g| divides
25, so the only possibilities for |g| are 1, 5, and 25. We already eliminated 25
since the group is not cyclic. If |g| = 1, the g = e, and e5 = e. If |g| = 5, then
by de�nition of order, g5 = e as well. Thus, if G is not cyclic, g5 = e for every
g ∈ G.

4 Chapter 7, Problem 28 (graded)

Since |G| = 8, there exists an element g ∈ G with g 6= e. By Corollary 2 on
page 142, |g| divides |G|, so the only possibilities for |g| are 1, 2, 4, and 8.
|g| cannot be 1 since g is not the identity element.
If |g| = 2, then we have found an element of order 2.
If |g| is either 4 or 8, we will have to use Theorem 4.2 on page 75 to �nd an

element of order 2.
If |g| = 4, then |g2| = 4

gcd(4,2) =
4
2 = 2, so g2 is an element of order 2 in G.

If |g| = 8, then |g4| = 8
gcd(8,4) =

8
4 = 2, so g4 is an element of order 2 in G.

2



5 Chapter 8, Problem 14 (graded)

Since G1 ≈ G2 and H1 ≈ H2, we have functions

φ : G1 → G2

and
ϕ : H1 → H2

such that φ and ϕ are isomorphisms: both maps are 1-1, onto, and operation-
preserving.

We need to �nd an isomorphism from G1 ⊕H1 to G2 ⊕H2 using φ and ϕ.
De�ne ψ : G1 ⊕H1 → G2 ⊕H2 by

ψ(g, h) = (φ(g), ϕ(h)) .

5.1 1-1

Let (g1, h1) and (g2, h2) be elements of G1 ⊕H1. That is, g1 and g2 are in G1,
while h1 and h2 are in H1. Suppose

ψ(g1, h1) = ψ(g2, h2).

Then
(φ(g1), ϕ(h1)) = (φ(g2), ϕ(h2)) .

Therefore,
φ(g1) = φ(g2)

and
ϕ(h1) = ϕ(h2).

Since φ and ϕ are 1-1, we can conclude that g1 = g2 and h1 = h2. Hence

(g1, h1) = (g2, h2),

so ψ is 1-1.

5.2 Onto

Let (g2, h2) ∈ G2 ⊕ H2. In order to show that ψ is onto, we need to �nd an
element in G1 ⊕H1 that is sent to (g2, h2) via ψ. Since g2 ∈ G2 and φ is onto,
there exists g1 ∈ G1 such that φ(g1) = g2. Similarly, since h2 ∈ H2 and ϕ is
onto, there exists h1 ∈ H1 such that ϕ(h1) = h2. Let us check if ψ sends (g1, h1)
to (g2, h2):

ψ(g1, h1) = (φ(g1), ϕ(h1)) = (g2, h2).

Therefore, ψ is onto.
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5.3 Operation-preserving

Let (g1, h1) and (g2, h2) be elements of G1 ⊕H1. Then we need to show that

ψ ((g1, h1)(g2, h2)) = ψ(g1, h1)ψ(g2, h2).

Let us start on the left. We can use the de�nition of multiplication in an external
direct product to write:

ψ ((g1, h1)(g2, h2)) = ψ(g1g2, h1h2).

Use the de�nition of ψ:

ψ(g1g2, h1h2) = (φ(g1g2), ϕ(h1h2)) .

φ and ϕ are operation preserving:

(φ(g1g2), ϕ(h1h2)) = (φ(g1)φ(g2), ϕ(h1)ϕ(h2)) .

We use the de�nition of multiplication in an external direct product to split the
ordered pair on the right side into a product of ordered pairs:

(φ(g1)φ(g2), ϕ(h1)ϕ(h2)) = (φ(g1), ϕ(h1)) (φ(g2), ϕ(h2)) .

If you have trouble, remember that the left components must be elements of G2,
while the right components must be elements of H2. Furthermore, since order
matters when multiplying in a group (especially if the group is non-Abelian),
φ(g1) must be to the left of φ(g2), and ϕ(h1) must be to the left of ϕ(h2).

Finally, we use the de�nition of ψ:

(φ(g1), ϕ(h1)) (φ(g2), ϕ(h2)) = ψ(g1, h1)ψ(g2, h2).

Therefore, ψ is operation-preserving. In conclusion, ψ is an isomorphism, and
G1 ⊕H1 ≈ G2 ⊕H2.

6 Chapter 8, Problem 16 (not graded)

We can �nd two subgroups of order 12 by using a direct product of a subgroup
H ≤ Z40 with a subgroup K ≤ Z30. To make sure that the subgroup H⊕K has
order twelve, we need to make sure that |H| · |K| = 12. Remember, the order
of a �nite (sub)group is the number of elements in it. The order of a direct
product H ⊕K is the product of the orders of the groups:

|H ⊕K| = |H| · |K|

6.1 |H| = 4 and |K| = 3

Let H = 〈10〉 and K = 〈10〉. In Z40, 10 has order 4, while in Z30, 10 has order 3.
Hence |H| = 4 and |K| = 3 (see Corollary 1, page 74), so |H ⊕K| = |H| · |K| =
4 · 3 = 12.

Remark. Since H and K are cyclic and gcd(4, 3) = 1, by Theorem 8.2, page
158, H ⊕K is cyclic.

4



6.2 |H| = 2 and |K| = 6

Let H = 〈20〉 and K = 〈5〉. In Z40, 20 has order 2, while in Z30, 5 has order 6.
Hence |H| = 2 and |K| = 6, so |H ⊕K| = |H| · |K| = 2 · 6 = 12.

Remark. Although H and K are cyclic, since gcd(2, 6) 6= 1, by Theorem 8.2,
H ⊕K is not cyclic.

7 Chapter 8, Problem 26 (graded)

Before searching for a subgroup, let us discuss how to check if a subgroup H
of Z4 ⊕ Z2 is NOT a direct product. First, look for two elements (a, b) and
(c, d) in H. Second, check if both (a, d) and (c, b) are in H. If not, then H is
not a direct product. The reason this works is because a direct product is a
Cartesian product, and in a Cartesian product, you can mix components to get
other elements. For example,

Z4 ⊕ Z2 = {(0, 0) , (1, 0) , (2, 0) , (3, 0) , (0, 1) , (1, 1) , (2, 1) , (3, 1)} .

Note that (1, 0) and(2, 1) are in Z4 ⊕ Z2, and so are (1, 1) and (2, 0).
In contrast, consider the subgroup 〈(2, 1)〉:

〈(2, 1)〉 = {(0, 0) , (2, 1)} .

Note that (0, 0) and(2, 1) are in 〈(2, 1)〉, but (0, 1) and (2, 0) are not in 〈(2, 1)〉.
Therefore, 〈(2, 1)〉 is not a Cartesian product, so it cannot be a direct product.

Remark. The test demonstrated in this solution is not e�ective at checking if a
(sub)group is a direct product!

8 Chapter 8, Problem 74 (graded)

We will use the RSA scheme with n = p ·q = 37 ·73 = 2701 and r = 5 (in general
r must be coprime to lcm(37− 1, 73− 1) = lcm(36, 72) = 72). To encode �RM,�
we translate the letters into numbers using their position in the alphabet:

RM = 1813.

Next, we compute (1813)r = (1813)5 and reduce it modulo 2701:

(1813)5 = 1850mod 2701.

Thus, the encoded message is 1850.
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Details

To compute and reduce (1813)5 mod 2701 without having to work with large
powers of a four-digit number, we can use the fact that

(1813)5 =
(
(1813)2

)2 · (1813).
This will allow us to work with smaller powers. We will reduce modulo 2701
along the way to keep the numbers fairly small.

(1813)2:

(1813)2 = 3, 286, 969. To reduce this, we can divide it by 2701 and round down:

3, 286, 969

2701
' 1216.

Thus, 3, 286, 969 = (1216)(2701) + r2 where 0 ≤ r2 < 2701. Hence r2 = 2553,
and

(1813)2 = 2553mod 2701.

(1813)4:

Now, (1813)4 =
(
(1813)2

)2
= (2553)2 mod 2701. We repeat the above process:

(2553)2 = 6, 517, 809, and

6, 517, 809

2701
' 2413.

6, 517, 809 = (2413)(2701) + r4 where 0 ≤ r4 < 2701. Hence r4 = 296, and

(1813)4 = 296mod 2701.

(1813)5:

Finally, (1813)5 = (1813)4 · (1813) = 296 · 1813 mod 2701. 296 · 1813 = 536, 648,
and

536, 648

2701
' 198.

Thus, 536, 648 = (198)(2701) + r5 where 0 ≤ r5 < 2701. Hence r5 = 1850, and

(1813)5 = 1850mod 2701.
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