Homework 7 Solutions

March 17, 2012

1 Chapter 9, Problem 10 (graded)

Let G be a cyclic group. That is, $G=\langle a\rangle$ for some $a \in G$. Then given any $g \in G, g=a^{n}$ for some integer n.

Let H be any normal subgroup of G (actually, since G is cyclic, it is also Abelian, so all subgroups of G are normal), and consider the factor group $G / H=$ $\{g H: g \in G\} . G / H$ is the group whose elements are left cosets of H. Let $g H$ be any element of G / H. Since $g=a^{n}$ for some integer n, we have

$$
g H=a^{n} H
$$

Next, by definition of multiplication in a factor group,

$$
g H=a^{n} H=(a H)^{n}
$$

Therefore, if $g H$ is any element of G / H, then $g H=(a H)^{n}$ for some integer n. This implies that $G / H=\langle a H\rangle$. That is, G / H is a cyclic group generated by the element $a H$.

2 Chapter 9, Problem 16 (graded)

Before presenting the solution, let me talk about computing order in a factor group G / H. Suppose $g H$ is an element of G / H (so $g \in G$) and I want to compute its order as an element of G / H. In other words, I want to find an integer n such that

$$
(g H)^{n}=e H=H
$$

and if $1 \leq m<n$,

$$
(g H)^{m} \neq H
$$

By definition of multiplication in a factor group, we need to find n so that

$$
g^{n} H=H
$$

and if $1 \leq m<n$,

$$
g^{m} H \neq H
$$

By the Lemma on page $139, g^{n} H=H$ iff $g^{n} \in H$, and $g^{m} H \neq H$ iff $g^{m} \notin H$.
Therefore, $|g H|=n$ in G / H iff n is the smallest positive integer for which $g^{n} \in H$. This allows you to switch between working in G / H and in G.

Now, consider the group D_{6} and a subgroup $Z\left(D_{6}\right)=\left\{R_{0}, R_{180}\right\}$, the center of D_{6}. That is R_{0} and R_{180} commute with any element in D_{6}. Note that $Z\left(D_{6}\right)$ is a normal subgroup of D_{6} (see Example 2 on page 179). To find the order of the element $R_{60} Z\left(D_{6}\right)$ in $D_{6} / Z\left(D_{6}\right)$, we need to find the smallest positive integer n such that

$$
R_{60}^{n} \in Z\left(D_{6}\right)=\left\{R_{0}, R_{180}\right\}
$$

Let us try some values for n :

- $n=1$ gives us $R_{60}^{1}=R_{60} \notin Z\left(D_{6}\right)$.
- $n=2$ gives us $R_{60}^{2}=R_{120} \notin Z\left(D_{6}\right)$.
- $n=3$ gives us $R_{60}^{3}=R_{180} \in Z\left(D_{6}\right)$.

Therefore, $n=3$ is the smallest integer for which $R_{60}^{n} \in Z\left(D_{6}\right)$, and thus $R_{60} Z\left(D_{6}\right)$ has order 3 in $D_{6} / Z\left(D_{6}\right)$.

3 Chapter 9, Problem 20 (not graded)

Let $U(20)=\{1,3,7,9,11,13,17,19\}$ be the group of positive integers coprime to 20 whose operation is multiplication $\bmod 20$. Then

$$
U_{5}(20)=\{x \in U(20): x=1 \bmod 5\}=\{1,11\} .
$$

This is a subgroup of $U(20)$. It is normal because $U(20)$ is Abelian. Since $|U(20)|=8$ and $\left|U_{5}(20)\right|=2$, by Corollary 1 on page 142 , there are $\frac{8}{2}=4$ distinct cosets of $U_{5}(20)$. They are:

$$
\begin{aligned}
& 1 U_{5}(20)=U_{5}(20)=\{1,11\}=\{11,1\}=\{11,11 \cdot 11\}=11 U_{5}(20) \\
& 3 U_{5}(20)=\{3,33\}=\{3,13\}=\{13,3\}=\{13,13 \cdot 11\}=13 U_{5}(20) \\
& 7 U_{5}(20)=\{7,77\}=\{7,17\}=\{17,7\}=\{17,17 \cdot 11\}=17 U_{5}(20) \\
& 9 U_{5}(20)=\{9,99\}=\{9,19\}=\{19,9\}=\{19,19 \cdot 11\}=19 U_{5}(20)
\end{aligned}
$$

Remember, we are working mod 20. Hence

$$
U(20) / U_{5}(20)=\{\{1,11\},\{3,13\},\{7,17\},\{9,19\}\}
$$

We want to write our cosets as $a U_{5}(20)$. Let us use values of a between 1 and 9 :

$$
U(20) / U_{5}(20)=\left\{U_{5}(20), 3 U_{5}(20), 7 U_{5}(20), 9 U_{5}(20)\right\}
$$

Multiplication in $U(20) / U_{5}(20)$ works like the multiplication on $U(20)$:

$$
a U_{5}(20) \cdot b U_{5}(20)=(a b) U_{5}(20)
$$

(make sure to reduce $a b \bmod 20$ as well).
When making the Cayley table, we only want to use $U_{5}(20), 3 U_{5}(20), 7 U_{5}(20), 9 U_{5}(20)$. So, if we were multiplying and somehow got $13 U_{5}(20)$, we should replace it by the same coset $3 U_{5}(20)$.

\times	$U_{5}(20)$	$3 U_{5}(20)$	$7 U_{5}(20)$	$9 U_{5}(20)$
$U_{5}(20)$	$U_{5}(20)$	$3 U_{5}(20)$	$7 U_{5}(20)$	$9 U_{5}(20)$
$3 U_{5}(20)$	$3 U_{5}(20)$	$9 U_{5}(20)$	$U_{5}(20)$	$7 U_{5}(20)$
$7 U_{5}(20)$	$7 U_{5}(20)$	$U_{5}(20)$	$9 U_{5}(20)$	$3 U_{5}(20)$
$9 U_{5}(20)$	$9 U_{5}(20)$	$7 U_{5}(20)$	$3 U_{5}(20)$	$U_{5}(20)$

4 Chapter 9, Problem 28 (graded)

4.1 Distinguishing between \mathbb{Z}_{4} and $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$

The main difference between these two groups is that \mathbb{Z}_{4} has elements of order four, while $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$ does not. Thus, if we have a group G of order four, it is isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$, and we can figure out which one by either:

1. Showing that the order of every element in G is less than or equal to two (so $G \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$), or
2. Showing that at least one element of G has order four (so $G \approx \mathbb{Z}_{4}$).

In this problem, we have an Abelian group $G=\mathbb{Z}_{4} \oplus \mathbb{Z}_{4}$ and two (normal) subgroups

$$
H=\{(0,0),(2,0),(0,2),(2,2)\}
$$

and

$$
K=\langle(1,2)\rangle=\{(0,0),(1,2),(2,0),(3,2)\}
$$

We will look at the factor groups G / H and G / K and determine if they are isomorphic to either \mathbb{Z}_{4} or $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$. Note that the order of both G / H and G / K is 4 , since G itself has order 16 and both H and K have order 4, so

$$
|G / H|=\frac{|G|}{|H|}=\frac{4 \cdot 4}{4}=4
$$

and similarly for G / K.

4.2 G / H

Let $(a, b)+H$ be an element of G / H. That is, $(a, b) \in G$, so a and b are integers between 0 and 3. Let us look at integer multiples of $(a, b)+H$ (in order to obtain information on the order of $(a, b)+H)$.

$$
2 \cdot((a, b)+H)=(2 \cdot(a, b))+H=(2 a, 2 b)+H
$$

Is $(2 a, 2 b)+H=H$, the identity element of G / H ? In other words, is $(2 a, 2 b) \in$ H ? Note that $2 a$ is either 0 or 2 , while $2 b$ is either 0 or 2 (remember to reduce
$\bmod 4)$, so $(2 a, 2 b) \in H$, and hence $(2 a, 2 b)+H=H$. Therefore, for any $(a, b)+H \in G / H$, since $2 \cdot((a, b)+H)=H$,

$$
|(a, b)+H| \leq 2
$$

We cannot say that the order of $(a, b)+H$ is two since it is possible that $1 \cdot((a, b)+H)=H$ for certain choices of (a, b), but we can conclude that the order of every element of G / H is less than or equal to two, so G / H has no elements of order four. Therefore,

$$
G / H \approx \mathbb{Z}_{2} \oplus \mathbb{Z}_{2}
$$

$4.3 G / K$

Let $(a, b)+K$ be an element of G / K. Let us look at integer multiples of $(a, b)+K$.

$$
2 \cdot((a, b)+K)=(2 \cdot(a, b))+K=(2 a, 2 b)+K
$$

Is $(2 a, 2 b)+K=K$, the identity element of G / K ? In other words, is $(2 a, 2 b) \in$ K ? In this case, it is possible to choose (a, b) so that $(2 a, 2 b) \notin K$. For this to happen, we need to pick b so that $2 b=2$, and we need to pick a so that $2 a$ is not equal to 1 or 3 . Thus, we can try $(a, b)=(0,1)$. Then $(2 a, 2 b)=(0,2) \notin K$, so in G / K,

$$
2 \cdot((0,1)+K)=(2 \cdot(0,1))+K=(0,2)+K \neq K .
$$

Furthermore, $(0,1)+K$ itself is not equal to K since $(0,1) \notin K$. Hence

$$
|(0,1)+K|>2 .
$$

What could the order of $(0,1)+K$ be in G / K ? Since $|G / K|=4$, we know the order of $(0,1)+K$ must divide 4 . Since $|(0,1)+K|>2$,

$$
|(0,1)+K|=4 .
$$

Therefore, G / K has an element of order 4 , so it must be isomorphic to \mathbb{Z}_{4}.

5 Chapter 9, Problem 30 (not graded)

We need to write 165 as a product of coprime integers in four different ways and use the formula in the middle of page 192 to write $U(165)$ as an internal direct product. In general, if $m=n_{1} n_{2} \ldots n_{k}$ where $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ for $i \neq j$,

$$
U(m)=U_{m / n_{1}}(m) \times U_{m / n_{2}}(m) \times \ldots \times U_{m / n_{k}}(m) .
$$

$165=3 \cdot 5 \cdot 11$
Here, $n_{1}=3, n_{2}=5$, and $n_{3}=11$. Then
$U(165)=U_{165 / 3}(165) \times U_{165 / 5}(165) \times U_{165 / 11}(165)=U_{55}(165) \times U_{33}(165) \times U_{15}(165)$.
$165=15 \cdot 11$
Here, $n_{1}=15$, and $n_{2}=11$. Then

$$
U(165)=U_{165 / 15}(165) \times U_{165 / 11}(165)=U_{11}(165) \times U_{15}(165) .
$$

$165=3 \cdot 55$
Here, $n_{1}=3$, and $n_{2}=55$. Then

$$
U(165)=U_{165 / 3}(165) \times U_{165 / 55}(165)=U_{55}(165) \times U_{3}(165) .
$$

$165=5 \cdot 33$
Here, $n_{1}=5$, and $n_{2}=33$. Then

$$
U(165)=U_{165 / 5}(165) \times U_{165 / 33}(165)=U_{33}(165) \times U_{5}(165) .
$$

6 Chapter 9, Problem 34 (not graded)

Since \mathbb{Z} has addition as its operation, we should be proving that $\mathbb{Z}=H+K$. In other words,

$$
\mathbb{Z}=\langle 5\rangle+\langle 7\rangle=\{5 s+7 t: s, t \in \mathbb{Z}\} .
$$

Notice that the definition of $\langle 5\rangle+\langle 7\rangle$ tells us that $\langle 5\rangle+\langle 7\rangle$ is the set of linear combinations of 5 and 7 . Since $\operatorname{gcd}(5,7)=1$, there exist integers s_{1}, t_{1} such that

$$
1=5 s_{1}+7 t_{1} .
$$

For example, take $s_{1}=3$ and and $t_{1}=-2$. If n is any other integer, we can express it as a linear combination of 5 and 7 :

$$
n=n \cdot 1=n\left(5 s_{1}+7 t_{1}\right)=5\left(n s_{1}\right)+7\left(n t_{1}\right) \in\langle 5\rangle+\langle 7\rangle .
$$

Thus, $\mathbb{Z} \subseteq\langle 5\rangle+\langle 7\rangle$. Since $\langle 5\rangle+\langle 7\rangle \subseteq \mathbb{Z}$, we have

$$
\mathbb{Z}=\langle 5\rangle+\langle 7\rangle .
$$

However, $\langle 5\rangle \cap\langle 7\rangle \neq\{0\}$. In fact, $\langle 5\rangle \cap\langle 7\rangle=\langle 35\rangle$, since 35 is a multiple of both 5 and 7 . Indeed, $\mathbb{Z} \neq\langle 5\rangle \times\langle 7\rangle$, and we will show this by proving that \mathbb{Z} is not isomorphic to $\langle 5\rangle \oplus\langle 7\rangle$ and applying the contrapositive of Theorem 9.6.

To show that \mathbb{Z} is not isomorphic to $\langle 5\rangle \oplus\langle 7\rangle$, we will proceed by contradiction and assume that there is an isomorphism $\phi: \mathbb{Z} \rightarrow\langle 5\rangle \oplus\langle 7\rangle$. Let

$$
\phi(1)=(5 s, 7 t) \in\langle 5\rangle \oplus\langle 7\rangle .
$$

Then for any integer n,

$$
\phi(n)=(5 n s, 7 n t)
$$

Consider the element $(5 s+5,7 t) \in\langle 5\rangle \oplus\langle 7\rangle$. Since ϕ is an isomorphism, it must be onto, so there is an integer m such that

$$
\phi(m)=(5 s+5,7 t) .
$$

However,

$$
\phi(m)=(5 m s, 7 m t),
$$

so we need to find m so that $5 s+5=5 m s$ and $7 t=7 m t$. Thus, by setting components equal and canceling 5 and 7 ,

$$
s+1=m s
$$

and

$$
t=m t
$$

If $t \neq 0$, then this forces $m=1$, but then we get $s+1=1 s=s$, which is not possible. Thus, $t=0$, but then for any integer n,

$$
\phi(n)=(5 n s, 7 n t)=(5 n s, 0),
$$

so $\phi(\mathbb{Z})=\langle 5 s\rangle \oplus\{0\} \neq\langle 5\rangle \oplus\langle 7\rangle$. In other words, for any integer m, the second component of $\phi(m)$ must be zero. For example, there is no integer m for which

$$
\phi(m)=(5,7) .
$$

Therefore, ϕ is not onto, contradicting the assumption that it was an isomorphism. Therefore, \mathbb{Z} is not isomorphic to $\langle 5\rangle \oplus\langle 7\rangle$, so by Theorem $9.6, \mathbb{Z}$ is not equal to $\langle 5\rangle \times\langle 7\rangle$.

7 Chapter 9, Problem 44 (not graded, but take a look)

By Theorem 9.4, page 187, we have

$$
D_{13} / Z\left(D_{13}\right) \approx \operatorname{Inn}\left(D_{13}\right)
$$

which is pretty close to what we want. In order to prove that D_{13} itself is isomorphic to $\operatorname{Inn}\left(D_{13}\right)$, we need to do the following:

1. Prove that $Z\left(D_{13}\right)=\left\{R_{0}\right\}$, where R_{0} is the identity element of D_{13} (it is a trivial rotation by a multiple of 360 degrees).
2. Prove that $D_{13} /\left\{R_{0}\right\} \approx D_{13}$. This can be done by either defining an isomorphism from D_{13} to $D_{13} /\left\{R_{0}\right\}$, or by defining a homomorphism from D_{13} to D_{13} which is onto and has kernel equal to $\left\{R_{0}\right\}$. I will present both ways.
3. Apply part 2, part 1, and then Theorem 9.4:

$$
D_{13} \approx D_{13} /\left\{R_{0}\right\}=D_{13} / Z\left(D_{13}\right) \approx \operatorname{Inn}\left(D_{13}\right)
$$

7.1 $Z\left(D_{13}\right)=\left\{R_{0}\right\}$

Let R be a rotation by $\frac{360}{13}$ degrees counter-clockwise (so $R^{13}=R_{0}$) and k be an integer with $1 \leq k<13$. Then R^{k} is a rotation by $\frac{360}{13} k$ degrees, and since $1 \leq k<13, R^{k}$ is not the identity (trivial rotation by a multiple of 360 degrees).

Let F be any flip.
Our goal is to prove that R^{k} and F are not in $Z\left(D_{13}\right)$ for $1 \leq k<13$. We will prove that

$$
F R^{k} \neq R^{k} F
$$

and hence F does not commute with R^{k}, so they cannot be in $Z\left(D_{13}\right)$. This will leave R_{0} as the only element in $Z\left(D_{13}\right)$.

By exercise 32 on page 54, we have

$$
F R^{k} F=R^{-k} .
$$

First, let me point out that $R^{k} \neq R^{-k}$. This is because by Theorem 4.2 on page $75,\left|R^{k}\right|=\frac{|R|}{\operatorname{gcd}(|R|, k)}=\frac{13}{\operatorname{gcd}(13, k)}=\frac{13}{1}=13 .|R|=13$ because if a 13 sided figure is rotated by $\frac{360}{13}$ degrees, it would have to be rotated twelve more times for a total of thirteen rotations to get back to the original position. $\operatorname{gcd}(13, k)=1$ since 13 is coprime to all integers between 1 and 12. Hence $\left(R^{k}\right)^{13}=R_{0}$, and $\left(R^{k}\right)^{2} \neq R_{0}\left(2\right.$ is a positive integer less than the order of $\left.R^{k}\right)$. Since $\left(R^{k}\right)^{2} \neq R_{0}$, $R^{k} \neq\left(R^{k}\right)^{-1}=R^{-k}$.

Thus, we have

$$
F R^{k} F=R^{-k} .
$$

Since $F F=R_{0}$, we can multiply on the right by F to get

$$
F R^{k}=R^{-k} F
$$

Since $R^{-k} \neq R^{k}, R^{-k} F \neq R^{k} F$, so

$$
F R^{k}=R^{-k} F \neq R^{k} F .
$$

Therefore, F does not commute with R^{k}, and R^{k} does not commute with F, so neither of them can be in $Z\left(D_{13}\right)$. Hence the only element in $Z\left(D_{13}\right)$ is R_{0}, so

$$
Z\left(D_{13}\right)=\left\{R_{0}\right\}
$$

$7.2 \quad D_{13} /\left\{R_{0}\right\} \approx D_{13}$

There are two ways to prove this result.

7.2.1 Finding an isomorphism from D_{13} to $D_{13} /\left\{R_{0}\right\}$

Define $f: D_{13} \rightarrow D_{13} /\left\{R_{0}\right\}$ by

$$
f(g)=g\left\{R_{0}\right\}
$$

Then for any $g, h \in D_{13}$,

$$
f(g h)=g h\left\{R_{0}\right\}=g\left\{R_{0}\right\} h\left\{R_{0}\right\}=f(g) f(h)
$$

so f preserves the operations.
Next, suppose

$$
f(g)=f(h)
$$

Then

$$
g\left\{R_{0}\right\}=h\left\{R_{0}\right\}
$$

SO

$$
\{g\}=\{h\} .
$$

Therefore, $g=h$. We could also use part 5 of the Lemma on page 139 to say that

$$
g^{-1} h \in\left\{R_{0}\right\}
$$

so $g^{-1} h=R_{0}$, and thus $g=h$. Hence f is $1-1$.
Finally, if we have a coset $g\left\{R_{0}\right\} \in D_{13} /\left\{R_{0}\right\}$, then by definition of f,

$$
f(g)=g\left\{R_{0}\right\}
$$

so f is onto. Therefore, f is an isomorphism, and

$$
D_{13} /\left\{R_{0}\right\} \approx D_{13}
$$

7.2.2 Finding a homomorphism from D_{13} to D_{13} which is onto and has kernel equal to $\left\{R_{0}\right\}$

Define $\phi: D_{13} \rightarrow D_{13}$ by

$$
\phi(g)=g
$$

That is, ϕ is the identity function on D_{13}.
Then for any $g, h \in D_{13}$,

$$
\phi(g h)=g h=\phi(g) \phi(h) .
$$

Thus, ϕ is a homomorphism since it preserves operations. Now we need to prove that ϕ is onto and has kernel equal to $\left\{R_{0}\right\}$.

Given any $g \in D_{13}$,

$$
\phi(g)=g
$$

Thus, ϕ is onto, so $\phi\left(D_{13}\right)=D_{13}$.
Finally, suppose $g \in \operatorname{Ker} \phi$. Then $\phi(g)=R_{0}$, so $g=\phi(g)=R_{0}$, and therefore $\operatorname{Ker} \phi \subseteq\left\{R_{0}\right\}$. On the other hand, since $\phi\left(R_{0}\right)=R_{0}, R_{0} \in \operatorname{Ker} \phi$, so $\left\{R_{0}\right\} \subseteq \operatorname{Ker} \phi$. Thus, $\operatorname{Ker} \phi=\left\{R_{0}\right\}$.

By the First Isomorphism Theorem on page 207,

$$
D_{13} / \operatorname{Ker} \phi \approx \phi\left(D_{13}\right) .
$$

Since $\operatorname{Ker} \phi=\left\{R_{0}\right\}$ and $\phi\left(D_{13}\right)=D_{13}$,

$$
D_{13} /\left\{R_{0}\right\} \approx D_{13}
$$

7.3 Conclusion

By part 2,

$$
D_{13} \approx D_{13} /\left\{R_{0}\right\}
$$

By part 1 , since $Z\left(D_{13}\right)=\left\{R_{0}\right\}$,

$$
D_{13} /\left\{R_{0}\right\}=D_{13} / Z\left(D_{13}\right)
$$

By Theorem 9.4, page 187,

$$
D_{13} / Z\left(D_{13}\right) \approx \operatorname{Inn}\left(D_{13}\right)
$$

Putting all this together,

$$
D_{13} \approx D_{13} /\left\{R_{0}\right\}=D_{13} / Z\left(D_{13}\right) \approx \operatorname{Inn}\left(D_{13}\right)
$$

and therefore,

$$
D_{13} \approx \operatorname{Inn}\left(D_{13}\right)
$$

8 Chapter 9, Problem 70 (graded)

Let $H=\{e, h\}$ and let $Z(G)$ be the center of G. To show that $H \subseteq Z(G)$, we need to show that each element of H is an element of $Z(G)$. By definition, for any $g \in G$, since

$$
e g=g=g e
$$

$e \in Z(G)$. Now we need to show that h commutes with every element in G.
Since H is normal, we know that for any $g \in G, g H=H g$ and $g H g^{-1} \subseteq H$. This gives us two options to proceed.

8.1 Using $g H=H g$

For any $g \in G$,

$$
g H=\{g e, g h\}=\{g, g h\},
$$

and

$$
H g=\{e g, h g\}=\{g, h g\} .
$$

Therefore, since $g H=H g$,

$$
\{g, g h\}=\{g, h g\}
$$

so $g h=h g$ for any $g \in G$. Therefore, $h \in Z(G)$, so $H \subseteq Z(G)$.

8.2 Using $g H g^{-1} \subseteq H$

For any $g \in G, g H g^{-1} \subseteq H$. Hence $g e g^{-1}=e \in H$ and $g h g^{-1} \in H$, so $g h g^{-1}$ is either e or h. If $g h g^{-1}=e$, then $h=g^{-1} e g=e$, a contradiction, so

$$
g h g^{-1}=h .
$$

Therefore, $g h=h g$ for any $g \in G$, so $h \in Z(G)$, and hence $H \subseteq Z(G)$.

9 Chapter 10, Problem 4 (not graded)

Let $\sigma: S_{n} \rightarrow \mathbb{Z}_{2}$ be the mapping described in example 11, page 206 . We can describe σ better by using the fact that every permutation is a product of 2-cycles.

Let $\alpha \in S_{n}$, and suppose we can write α as a product of $r 2$-cycles. If r is an even number, then α is an even permutation, so $\sigma(\alpha)=0$. If r is an odd number, then α is an odd permutation, so $\sigma(\alpha)=1$. Notice that either way, $\sigma(\alpha)=r \bmod 2$. Theorem 5.5 on page 105 assures us that we do not need to worry about the exact value of r, only its remainder when dividing by 2 .

Therefore, let $\alpha, \beta \in S_{n}$, and suppose α is a product of $r 2$-cycles and β as a product of $s 2$-cycles. Then $\alpha \beta$ is a product of $r+s 2$-cycles. Thus,

$$
\sigma(\alpha \beta)=r+s \bmod 2
$$

and

$$
\sigma(\alpha)+\sigma(\beta)=r \bmod 2+s \bmod 2=r+s \bmod 2
$$

so

$$
\sigma(\alpha \beta)=\sigma(\alpha)+\sigma(\beta) .
$$

Hence σ preserves operations, so it is a homomorphism.

10 Chapter 10, Problem 10 (graded)

Let $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{10}$ be a function given by $f(x)=3 x$ reduced mod 10 . Be careful: $0 \leq x \leq 11$.

We will present a few ways to solve this problem.

10.1 Showing that f does not preserve the operations

In $\mathbb{Z}_{12}, 6+6=0 \bmod 12$. However,

$$
f(6+6)=f(0)=0
$$

while

$$
f(6)+f(6)=18+18=36=6
$$

and $0 \neq 6$ in \mathbb{Z}_{10}. Thus, f does not preserve the operations because $f(6+6) \neq$ $f(6)+f(6)$.

10.2 Showing that f does not preserve the operations (another example)

In $\mathbb{Z}_{12}, 7+7=2 \bmod 12$. However,

$$
f(7+7)=f(2)=6
$$

while

$$
f(7)+f(7)=21+21=42=2
$$

and $6 \neq 2$ in \mathbb{Z}_{10}. Thus, f does not preserve the operations because $f(7+7) \neq$ $f(7)+f(7)$.

10.3 Using Theorem 10.1, Part 2

In $\mathbb{Z}_{12}, 2 \cdot 8=4 \bmod 12$. However,

$$
f(2 \cdot 8)=f(4)=12=2
$$

while

$$
2 \cdot f(8)=2 \cdot(24)=48=8
$$

and $2 \neq 8$ in \mathbb{Z}_{10}. Thus, f fails Part 2 of Theorem 10.1 because $f(2 \cdot 8) \neq 2 \cdot f(8)$. It cannot be a homomorphism.

10.4 Using Theorem 10.1, Part 3

In $\mathbb{Z}_{12}, 2 \cdot 6=0$ and $1 \cdot 6 \neq 0$, so $|6|=2$. However,

$$
f(6)=18=8
$$

and in $\mathbb{Z}_{10},|8|=|8 \cdot 1|=\frac{10}{\operatorname{gcd}(10,8)}=5$, which does not divide 2 , the order of 6 in \mathbb{Z}_{12}. Thus, f fails Part 3 of Theorem 10.1.

10.5 Using Theorem 10.1, Part 4

$\operatorname{Ker} f=\left\{x \in \mathbb{Z}_{12}: f(x)=0\right\}$. We see that $\operatorname{Ker} f=\{0,10\}$ since $f(0)=0=$ $30=f(10) \bmod 10 . \quad \operatorname{Ker} f$ is not a subgroup of \mathbb{Z}_{12} since it is not closed $(10+10=8 \notin \operatorname{Ker} f)$, and does not have inverses (the additive inverse of 10 in \mathbb{Z}_{12} is 2 , which is not in $\operatorname{Ker} f$ since $f(2)=6 \neq 0$ in \mathbb{Z}_{10}). Thus, f cannot be a homomorphism.

10.6 Using Theorem 10.1, Part 5

We have $f(1)=3=33=f(11) \bmod 10$, but

$$
1+\operatorname{Ker} f=\{1+0,1+10\}=\{1,11\}
$$

and (since $21=9 \bmod 12$),

$$
11+\operatorname{Ker} f=\{11+0,11+10\}=\{11,9\}
$$

so

$$
1+\operatorname{Ker} f \neq 11+\operatorname{Ker} f
$$

10.7 Using Theorem 10.1, Part 6

We have $f(3)=9$, but the set $f^{-1}(9)=\{3\}$, while $3+\operatorname{Ker} f=\{3+0,3+10\}=$ $\{3,1\} . f^{-1}(9) \neq 3+\operatorname{Ker} f$.

10.8 Using Theorem 10.2, Part 1

Let $H=\{0,6\}$ be a subgroup of \mathbb{Z}_{12}. Then $f(\{0,6\})=\{f(0), f(6)\}=\{0,8\}$, which is not a subgroup of \mathbb{Z}_{10} since it is not closed $(8+8=6 \notin f(\{0,6\}))$ and it does not contain all inverses (it does not have 2 , the additive inverse of 8).

10.9 Using Theorem 10.2, Part 5

$|\operatorname{Ker} f|=2$, but f is not a 2 -to- 1 mapping because only one element in $\mathbb{Z}_{12}, 3$, is mapped to $9 \in \mathbb{Z}_{10}$. A 2 -to- 1 mapping would send exactly two elements in \mathbb{Z}_{12} to each element in \mathbb{Z}_{10}.

10.10 Using Theorem 10.2, Part 6

$\left|\mathbb{Z}_{12}\right|=12$. However, $f\left(\mathbb{Z}_{12}\right)=\{0,3,6,9,2,5,8,1,4,7\}=\mathbb{Z}_{10}$, which has order 10. Since 10 does not divide $12, f$ cannot be a homomorphism.

10.11 Using Theorem 10.2, Part 7

Let $\bar{K}=\{0,5\}$ be a subgroup of \mathbb{Z}_{10}. Then $f^{-1}\{\bar{K}\}=\{0,10,5\}$, which is not a subgroup of \mathbb{Z}_{12} (it is not closed).

Conclusion

f is not a homomorphism.

11 Chapter 10, Problem 51 (presented on 3/15 during a review session)

Let G be any group, $Z(G)$ be its center, and $\operatorname{Inn}(G)=\left\{\phi_{g}: g \in G\right\}$, where ϕ_{g} is a function from G to G defined as follows: for any $x \in G$,

$$
\phi_{g}(x)=g x g^{-1} .
$$

The function ϕ_{g} is called the inner automorphism of G induced by g. Each element of g gives an inner automorphism, but it is possible to have two different elements g and h in G induce the same inner automorphism $\left(\phi_{g}(x)=\phi_{h}(x)\right.$ for all $x \in G)$. $\operatorname{Inn}(G)$ is a group whose operation is function composition read from right to left.

To prove that

$$
G / Z(G) \approx \operatorname{Inn}(G)
$$

we need to find a function f from G to $\operatorname{Inn}(G)$ with the following properties:

1. f is a homomorphism (preserves operations).
2. f is onto. That is, $f(G)=\operatorname{Inn}(G)$.
3. $\operatorname{Ker} f=Z(G)$.

Once these three properties are proven, we can apply the First Isomorphism Theorem on page 207 to show that

$$
G / Z(G) \approx \operatorname{Inn}(G)
$$

Again, when using the First Isomorphism Theorem, the domain of the homomorphism is G, not $G / Z(G)$.

For $g \in G$, define

$$
f(g)=\phi_{g} .
$$

In other words, $f(g)$ is the inner automorphism of G induced by g.

$11.1 f$ is a homomorphism

Let $g, h \in G$. Then

$$
\begin{aligned}
f(g h) & =\phi_{g h} \\
f(g) f(h) & =\phi_{g} \circ \phi_{h}
\end{aligned}
$$

In order to show that $f(g h)=f(g) f(h)$, we need to prove that the functions $\phi_{g h}$ and $\phi_{g} \circ \phi_{h}$ are equal. To do this, let $x \in G$. Then

$$
\phi_{g h}(x)=(g h) x(g h)^{-1}=g h x h^{-1} g^{-1}
$$

and

$$
\phi_{g} \circ \phi_{h}(x)=\phi_{g}\left(h x h^{-1}\right)=g\left(h x h^{-1}\right) g^{-1}=g h x h^{-1} g^{-1} .
$$

Thus, $\phi_{g h}(x)=\phi_{g} \circ \phi_{h}(x)$ for any $x \in G$. Hence the functions $\phi_{g h}$ and $\phi_{g} \circ \phi_{h}$ are equal, so $f(g h)=f(g) f(h)$. Therefore, f preserves the operations, so it is a homomorphism.

$11.2 f$ is onto (so $f(G)=\operatorname{Inn}(G)$)

Let ϕ_{g} be any element of $\operatorname{Inn}(G)$. Then ϕ_{g} is the inner automorphism of G induced by $g \in G$. Then by definition,

$$
f(g)=\phi_{g},
$$

so f is onto.

11.3 $\operatorname{Ker} f=Z(G)$

Before we begin, let us point out that the identity element of $\operatorname{Inn}(G)$ is ϕ_{e}, the function given by

$$
\phi_{e}(x)=e x e^{-1}=x .
$$

To determine $\operatorname{Ker} f$, we start by looking at an element $g \in \operatorname{Ker} f$. Then $f(g)$ is the identity element of $\operatorname{Inn}(G)$:

$$
f(g)=\phi_{e} .
$$

We need to show that $g \in Z(G)$. Since $f(g)=\phi_{g}$, we have

$$
\phi_{g}=\phi_{e} .
$$

Therefore, for any $x \in G$, we have

$$
\begin{gathered}
g x g^{-1}=e x e^{-1}=x \\
g x g^{-1}=x \\
g x=x g .
\end{gathered}
$$

Therefore, $g \in Z(G)$. This implies that $\operatorname{Ker} f \subseteq Z(G)$.
Now, if $g \in Z(G)$, then for any $x \in G, g x=x g$, so

$$
\phi_{g}(x)=g x g^{-1}=(g x) g^{-1}=(x g) g^{-1}=x\left(g g^{-1}\right)=x=e x e^{-1}=\phi_{e}(x)
$$

so

$$
f(g)=\phi_{g}=\phi_{e},
$$

and hence $g \in \operatorname{Ker} f$. Thus, $Z(G) \subseteq \operatorname{Ker} f$, and therefore $\operatorname{Ker} f=Z(G)$.

11.4 Conclusion

Since f is a homomorphism, we can use Theorem 10.3 on page 207 to say

$$
G / \operatorname{Ker} f \approx f(G) .
$$

Since $f(G)=\operatorname{Inn}(G)$, and $\operatorname{Ker} f=Z(G)$, we have

$$
G / Z(G) \approx \operatorname{Inn}(G)
$$

