
Homework 7 Solutions

March 17, 2012

1 Chapter 9, Problem 10 (graded)

Let G be a cyclic group. That is, G = 〈a〉 for some a ∈ G. Then given any
g ∈ G, g = an for some integer n.

Let H be any normal subgroup of G (actually, since G is cyclic, it is also
Abelian, so all subgroups ofG are normal), and consider the factor groupG/H =
{gH : g ∈ G}. G/H is the group whose elements are left cosets of H. Let gH
be any element of G/H. Since g = an for some integer n, we have

gH = anH.

Next, by de�nition of multiplication in a factor group,

gH = anH = (aH)n.

Therefore, if gH is any element of G/H, then gH = (aH)n for some integer n.
This implies that G/H = 〈aH〉. That is, G/H is a cyclic group generated by
the element aH.

2 Chapter 9, Problem 16 (graded)

Before presenting the solution, let me talk about computing order in a factor
group G/H. Suppose gH is an element of G/H (so g ∈ G) and I want to
compute its order as an element of G/H. In other words, I want to �nd an
integer n such that

(gH)n = eH = H

and if 1 ≤ m < n,
(gH)m 6= H.

By de�nition of multiplication in a factor group, we need to �nd n so that

gnH = H

and if 1 ≤ m < n,
gmH 6= H.
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By the Lemma on page 139, gnH = H i� gn ∈ H, and gmH 6= H i� gm /∈ H.
Therefore, |gH| = n in G/H i� n is the smallest positive integer for which

gn ∈ H. This allows you to switch between working in G/H and in G.
Now, consider the group D6 and a subgroup Z(D6) = {R0, R180}, the center

of D6. That is R0 and R180 commute with any element in D6. Note that Z(D6)
is a normal subgroup of D6 (see Example 2 on page 179). To �nd the order
of the element R60Z(D6) in D6/Z(D6), we need to �nd the smallest positive
integer n such that

Rn
60 ∈ Z(D6) = {R0, R180} .

Let us try some values for n:

• n = 1 gives us R1
60 = R60 /∈ Z(D6).

• n = 2 gives us R2
60 = R120 /∈ Z(D6).

• n = 3 gives us R3
60 = R180 ∈ Z(D6).

Therefore, n = 3 is the smallest integer for which Rn
60 ∈ Z(D6), and thus

R60Z(D6) has order 3 in D6/Z(D6).

3 Chapter 9, Problem 20 (not graded)

Let U(20) = {1, 3, 7, 9, 11, 13, 17, 19} be the group of positive integers coprime
to 20 whose operation is multiplication mod 20. Then

U5(20) = {x ∈ U(20) : x = 1mod 5} = {1, 11} .

This is a subgroup of U(20). It is normal because U(20) is Abelian. Since
|U(20)| = 8 and |U5(20)| = 2, by Corollary 1 on page 142, there are 8

2 = 4
distinct cosets of U5(20). They are:

1U5(20) = U5(20) = {1, 11} = {11, 1} = {11, 11 · 11} = 11U5(20)

3U5(20) = {3, 33} = {3, 13} = {13, 3} = {13, 13 · 11} = 13U5(20)

7U5(20) = {7, 77} = {7, 17} = {17, 7} = {17, 17 · 11} = 17U5(20)

9U5(20) = {9, 99} = {9, 19} = {19, 9} = {19, 19 · 11} = 19U5(20)

Remember, we are working mod 20. Hence

U(20)/U5(20) = {{1, 11} , {3, 13} , {7, 17} , {9, 19}} .

We want to write our cosets as aU5(20). Let us use values of a between 1 and
9:

U(20)/U5(20) = {U5(20), 3U5(20), 7U5(20), 9U5(20)} .

Multiplication in U(20)/U5(20) works like the multiplication on U(20):

aU5(20) · bU5(20) = (ab)U5(20)
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(make sure to reduce ab mod 20 as well).
When making the Cayley table, we only want to use U5(20), 3U5(20), 7U5(20), 9U5(20).

So, if we were multiplying and somehow got 13U5(20), we should replace it by
the same coset 3U5(20).

× U5(20) 3U5(20) 7U5(20) 9U5(20)
U5(20) U5(20) 3U5(20) 7U5(20) 9U5(20)
3U5(20) 3U5(20) 9U5(20) U5(20) 7U5(20)
7U5(20) 7U5(20) U5(20) 9U5(20) 3U5(20)
9U5(20) 9U5(20) 7U5(20) 3U5(20) U5(20)

4 Chapter 9, Problem 28 (graded)

4.1 Distinguishing between Z4 and Z2 ⊕ Z2

The main di�erence between these two groups is that Z4 has elements of order
four, while Z2 ⊕ Z2 does not. Thus, if we have a group G of order four, it is
isomorphic to either Z4 or Z2 ⊕ Z2, and we can �gure out which one by either:

1. Showing that the order of every element in G is less than or equal to two
(so G ≈ Z2 ⊕ Z2), or

2. Showing that at least one element of G has order four (so G ≈ Z4).

In this problem, we have an Abelian group G = Z4 ⊕ Z4 and two (normal)
subgroups

H = {(0, 0), (2, 0), (0, 2), (2, 2)}
and

K = 〈(1, 2)〉 = {(0, 0), (1, 2), (2, 0), (3, 2)} .
We will look at the factor groups G/H and G/K and determine if they are
isomorphic to either Z4 or Z2⊕Z2. Note that the order of both G/H and G/K
is 4, since G itself has order 16 and both H and K have order 4, so

|G/H| = |G|
|H|

=
4 · 4
4

= 4,

and similarly for G/K.

4.2 G/H

Let (a, b)+H be an element of G/H. That is, (a, b) ∈ G, so a and b are integers
between 0 and 3. Let us look at integer multiples of (a, b) + H (in order to
obtain information on the order of (a, b) +H).

2 · ((a, b) +H) = (2 · (a, b)) +H = (2a, 2b) +H.

Is (2a, 2b) +H = H, the identity element of G/H? In other words, is (2a, 2b) ∈
H? Note that 2a is either 0 or 2, while 2b is either 0 or 2 (remember to reduce
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mod 4), so (2a, 2b) ∈ H, and hence (2a, 2b) + H = H. Therefore, for any
(a, b) +H ∈ G/H, since 2 · ((a, b) +H) = H,

|(a, b) +H| ≤ 2.

We cannot say that the order of (a, b) + H is two since it is possible that
1 · ((a, b) +H) = H for certain choices of (a, b), but we can conclude that the
order of every element of G/H is less than or equal to two, so G/H has no
elements of order four. Therefore,

G/H ≈ Z2 ⊕ Z2.

4.3 G/K

Let (a, b)+K be an element ofG/K. Let us look at integer multiples of (a, b)+K.

2 · ((a, b) +K) = (2 · (a, b)) +K = (2a, 2b) +K.

Is (2a, 2b) +K = K, the identity element of G/K? In other words, is (2a, 2b) ∈
K? In this case, it is possible to choose (a, b) so that (2a, 2b) /∈ K. For this to
happen, we need to pick b so that 2b = 2, and we need to pick a so that 2a is
not equal to 1 or 3. Thus, we can try (a, b) = (0, 1). Then (2a, 2b) = (0, 2) /∈ K,
so in G/K,

2 · ((0, 1) +K) = (2 · (0, 1)) +K = (0, 2) +K 6= K.

Furthermore, (0, 1) +K itself is not equal to K since (0, 1) /∈ K. Hence

|(0, 1) +K| > 2.

What could the order of (0, 1) +K be in G/K? Since |G/K| = 4, we know the
order of (0, 1) +K must divide 4. Since |(0, 1) +K| > 2,

|(0, 1) +K| = 4.

Therefore, G/K has an element of order 4, so it must be isomorphic to Z4.

5 Chapter 9, Problem 30 (not graded)

We need to write 165 as a product of coprime integers in four di�erent ways and
use the formula in the middle of page 192 to write U(165) as an internal direct
product. In general, if m = n1n2 . . . nk where gcd(ni, nj) = 1 for i 6= j,

U(m) = Um/n1
(m)× Um/n2

(m)× . . .× Um/nk
(m).

165 = 3 · 5 · 11
Here, n1 = 3, n2 = 5, and n3 = 11. Then

U(165) = U165/3(165)×U165/5(165)×U165/11(165) = U55(165)×U33(165)×U15(165).
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165 = 15 · 11
Here, n1 = 15, and n2 = 11. Then

U(165) = U165/15(165)× U165/11(165) = U11(165)× U15(165).

165 = 3 · 55
Here, n1 = 3, and n2 = 55. Then

U(165) = U165/3(165)× U165/55(165) = U55(165)× U3(165).

165 = 5 · 33
Here, n1 = 5, and n2 = 33. Then

U(165) = U165/5(165)× U165/33(165) = U33(165)× U5(165).

6 Chapter 9, Problem 34 (not graded)

Since Z has addition as its operation, we should be proving that Z = H +K.
In other words,

Z = 〈5〉+ 〈7〉 = {5s+ 7t : s, t ∈ Z} .

Notice that the de�nition of 〈5〉+ 〈7〉 tells us that 〈5〉+ 〈7〉 is the set of linear
combinations of 5 and 7. Since gcd(5, 7) = 1, there exist integers s1, t1 such
that

1 = 5s1 + 7t1.

For example, take s1 = 3 and and t1 = −2. If n is any other integer, we can
express it as a linear combination of 5 and 7:

n = n · 1 = n (5s1 + 7t1) = 5(ns1) + 7(nt1) ∈ 〈5〉+ 〈7〉 .

Thus, Z ⊆ 〈5〉+ 〈7〉. Since 〈5〉+ 〈7〉 ⊆ Z, we have

Z = 〈5〉+ 〈7〉 .

However, 〈5〉∩ 〈7〉 6= {0}. In fact, 〈5〉∩ 〈7〉 = 〈35〉, since 35 is a multiple of both
5 and 7. Indeed, Z 6= 〈5〉 × 〈7〉, and we will show this by proving that Z is not
isomorphic to 〈5〉 ⊕ 〈7〉 and applying the contrapositive of Theorem 9.6.

To show that Z is not isomorphic to 〈5〉⊕〈7〉, we will proceed by contradiction
and assume that there is an isomorphism φ : Z→ 〈5〉 ⊕ 〈7〉. Let

φ(1) = (5s, 7t) ∈ 〈5〉 ⊕ 〈7〉 .

Then for any integer n,
φ(n) = (5ns, 7nt).
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Consider the element (5s+5, 7t) ∈ 〈5〉⊕〈7〉. Since φ is an isomorphism, it must
be onto, so there is an integer m such that

φ(m) = (5s+ 5, 7t).

However,
φ(m) = (5ms, 7mt),

so we need to �nd m so that 5s + 5 = 5ms and 7t = 7mt. Thus, by setting
components equal and canceling 5 and 7,

s+ 1 = ms

and
t = mt.

If t 6= 0, then this forces m = 1, but then we get s + 1 = 1s = s, which is not
possible. Thus, t = 0, but then for any integer n,

φ(n) = (5ns, 7nt) = (5ns, 0),

so φ(Z) = 〈5s〉 ⊕ {0} 6= 〈5〉 ⊕ 〈7〉. In other words, for any integer m, the second
component of φ(m) must be zero. For example, there is no integer m for which

φ(m) = (5, 7).

Therefore, φ is not onto, contradicting the assumption that it was an isomor-
phism. Therefore, Z is not isomorphic to 〈5〉 ⊕ 〈7〉, so by Theorem 9.6, Z is not
equal to 〈5〉 × 〈7〉.

7 Chapter 9, Problem 44 (not graded, but take
a look)

By Theorem 9.4, page 187, we have

D13/Z(D13) ≈ Inn(D13),

which is pretty close to what we want. In order to prove that D13 itself is
isomorphic to Inn(D13),we need to do the following:

1. Prove that Z(D13) = {R0}, where R0 is the identity element of D13 (it is
a trivial rotation by a multiple of 360 degrees).

2. Prove that D13/ {R0} ≈ D13. This can be done by either de�ning an
isomorphism fromD13 toD13/ {R0}, or by de�ning a homomorphism from
D13 to D13 which is onto and has kernel equal to {R0}. I will present both
ways.

3. Apply part 2, part 1, and then Theorem 9.4:

D13 ≈ D13/ {R0} = D13/Z(D13) ≈ Inn(D13).
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7.1 Z(D13) = {R0}
Let R be a rotation by 360

13 degrees counter-clockwise (so R13 = R0) and k be
an integer with 1 ≤ k < 13. Then Rk is a rotation by 360

13 k degrees, and since
1 ≤ k < 13, Rk is not the identity (trivial rotation by a multiple of 360 degrees).

Let F be any �ip.
Our goal is to prove that Rk and F are not in Z(D13) for 1 ≤ k < 13. We

will prove that
FRk 6= RkF

and hence F does not commute with Rk, so they cannot be in Z(D13). This
will leave R0 as the only element in Z(D13).

By exercise 32 on page 54, we have

FRkF = R−k.

First, let me point out that Rk 6= R−k. This is because by Theorem 4.2 on page

75,
∣∣Rk

∣∣ = |R|
gcd(|R|,k) =

13
gcd(13,k) =

13
1 = 13. |R| = 13 because if a 13 sided �gure

is rotated by 360
13 degrees, it would have to be rotated twelve more times for a

total of thirteen rotations to get back to the original position. gcd(13, k) = 1

since 13 is coprime to all integers between 1 and 12. Hence
(
Rk

)13
= R0, and(

Rk
)2 6= R0 (2 is a positive integer less than the order of R

k). Since
(
Rk

)2 6= R0,

Rk 6=
(
Rk

)−1
= R−k.

Thus, we have
FRkF = R−k.

Since FF = R0, we can multiply on the right by F to get

FRk = R−kF.

Since R−k 6= Rk, R−kF 6= RkF , so

FRk = R−kF 6= RkF.

Therefore, F does not commute with Rk, and Rk does not commute with F , so
neither of them can be in Z(D13). Hence the only element in Z(D13) is R0, so

Z(D13) = {R0} .

7.2 D13/ {R0} ≈ D13

There are two ways to prove this result.

7.2.1 Finding an isomorphism from D13 to D13/ {R0}

De�ne f : D13 → D13/ {R0} by

f(g) = g {R0} .

7



Then for any g, h ∈ D13,

f(gh) = gh {R0} = g {R0}h {R0} = f(g)f(h)

so f preserves the operations.
Next, suppose

f(g) = f(h).

Then
g {R0} = h {R0}

so
{g} = {h} .

Therefore, g = h. We could also use part 5 of the Lemma on page 139 to say
that

g−1h ∈ {R0}
so g−1h = R0, and thus g = h. Hence f is 1-1.

Finally, if we have a coset g {R0} ∈ D13/ {R0}, then by de�nition of f ,

f(g) = g {R0} ,

so f is onto. Therefore, f is an isomorphism, and

D13/ {R0} ≈ D13.

7.2.2 Finding a homomorphism from D13 to D13 which is onto and

has kernel equal to {R0}

De�ne φ : D13 → D13 by
φ(g) = g.

That is, φ is the identity function on D13.
Then for any g, h ∈ D13,

φ(gh) = gh = φ(g)φ(h).

Thus, φ is a homomorphism since it preserves operations. Now we need to prove
that φ is onto and has kernel equal to {R0}.

Given any g ∈ D13,
φ(g) = g.

Thus, φ is onto, so φ(D13) = D13.
Finally, suppose g ∈ Kerφ. Then φ(g) = R0, so g = φ(g) = R0, and

therefore Kerφ ⊆ {R0}. On the other hand, since φ(R0) = R0, R0 ∈ Kerφ, so
{R0} ⊆ Kerφ. Thus, Kerφ = {R0}.

By the First Isomorphism Theorem on page 207,

D13/Kerφ ≈ φ(D13).

Since Kerφ = {R0} and φ(D13) = D13,

D13/ {R0} ≈ D13.
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7.3 Conclusion

By part 2,
D13 ≈ D13/ {R0} .

By part 1, since Z(D13) = {R0},

D13/ {R0} = D13/Z(D13).

By Theorem 9.4, page 187,

D13/Z(D13) ≈ Inn(D13).

Putting all this together,

D13 ≈ D13/ {R0} = D13/Z(D13) ≈ Inn(D13),

and therefore,
D13 ≈ Inn(D13).

8 Chapter 9, Problem 70 (graded)

Let H = {e, h} and let Z(G) be the center of G. To show that H ⊆ Z(G), we
need to show that each element of H is an element of Z(G). By de�nition, for
any g ∈ G, since

eg = g = ge

e ∈ Z(G). Now we need to show that h commutes with every element in G.
Since H is normal, we know that for any g ∈ G, gH = Hg and gHg−1 ⊆ H.

This gives us two options to proceed.

8.1 Using gH = Hg

For any g ∈ G,
gH = {ge, gh} = {g, gh} ,

and
Hg = {eg, hg} = {g, hg} .

Therefore, since gH = Hg,

{g, gh} = {g, hg} ,

so gh = hg for any g ∈ G. Therefore, h ∈ Z(G), so H ⊆ Z(G).

8.2 Using gHg−1 ⊆ H

For any g ∈ G, gHg−1 ⊆ H. Hence geg−1 = e ∈ H and ghg−1 ∈ H, so ghg−1

is either e or h. If ghg−1 = e, then h = g−1eg = e, a contradiction, so

ghg−1 = h.

Therefore, gh = hg for any g ∈ G, so h ∈ Z(G), and hence H ⊆ Z(G).
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9 Chapter 10, Problem 4 (not graded)

Let σ : Sn → Z2 be the mapping described in example 11, page 206. We
can describe σ better by using the fact that every permutation is a product of
2-cycles.

Let α ∈ Sn, and suppose we can write α as a product of r 2-cycles. If r is
an even number, then α is an even permutation, so σ(α) = 0. If r is an odd
number, then α is an odd permutation, so σ(α) = 1. Notice that either way,
σ(α) = r mod 2. Theorem 5.5 on page 105 assures us that we do not need to
worry about the exact value of r, only its remainder when dividing by 2.

Therefore, let α, β ∈ Sn, and suppose α is a product of r 2-cycles and β as
a product of s 2-cycles. Then αβ is a product of r + s 2-cycles. Thus,

σ(αβ) = r + smod 2

and
σ(α) + σ(β) = rmod 2 + smod 2 = r + smod 2

so
σ(αβ) = σ(α) + σ(β).

Hence σ preserves operations, so it is a homomorphism.

10 Chapter 10, Problem 10 (graded)

Let f : Z12 → Z10 be a function given by f(x) = 3x reduced mod 10. Be careful:
0 ≤ x ≤ 11.

We will present a few ways to solve this problem.

10.1 Showing that f does not preserve the operations

In Z12, 6 + 6 = 0 mod 12. However,

f(6 + 6) = f(0) = 0

while
f(6) + f(6) = 18 + 18 = 36 = 6

and 0 6= 6 in Z10. Thus, f does not preserve the operations because f(6 + 6) 6=
f(6) + f(6).

10.2 Showing that f does not preserve the operations (an-
other example)

In Z12, 7 + 7 = 2 mod 12. However,

f(7 + 7) = f(2) = 6
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while
f(7) + f(7) = 21 + 21 = 42 = 2

and 6 6= 2 in Z10. Thus, f does not preserve the operations because f(7 + 7) 6=
f(7) + f(7).

10.3 Using Theorem 10.1, Part 2

In Z12, 2 · 8 = 4 mod 12. However,

f(2 · 8) = f(4) = 12 = 2

while
2 · f(8) = 2 · (24) = 48 = 8

and 2 6= 8 in Z10. Thus, f fails Part 2 of Theorem 10.1 because f(2·8) 6= 2·f(8).
It cannot be a homomorphism.

10.4 Using Theorem 10.1, Part 3

In Z12, 2 · 6 = 0 and 1 · 6 6= 0, so |6| = 2. However,

f(6) = 18 = 8

and in Z10, |8| = |8 · 1| = 10
gcd(10,8) = 5, which does not divide 2, the order of 6

in Z12. Thus, f fails Part 3 of Theorem 10.1.

10.5 Using Theorem 10.1, Part 4

Kerf = {x ∈ Z12 : f(x) = 0}. We see that Kerf = {0, 10} since f(0) = 0 =
30 = f(10) mod 10. Kerf is not a subgroup of Z12 since it is not closed
(10 + 10 = 8 /∈ Kerf), and does not have inverses (the additive inverse of 10 in
Z12 is 2, which is not in Kerf since f(2) = 6 6= 0 in Z10). Thus, f cannot be a
homomorphism.

10.6 Using Theorem 10.1, Part 5

We have f(1) = 3 = 33 = f(11) mod 10, but

1 +Kerf = {1 + 0, 1 + 10} = {1, 11}

and (since 21 = 9 mod 12),

11 +Kerf = {11 + 0, 11 + 10} = {11, 9}

so
1 +Kerf 6= 11 +Kerf.
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10.7 Using Theorem 10.1, Part 6

We have f(3) = 9, but the set f−1(9) = {3}, while 3+Kerf = {3 + 0, 3 + 10} =
{3, 1}. f−1(9) 6= 3 +Kerf .

10.8 Using Theorem 10.2, Part 1

Let H = {0, 6} be a subgroup of Z12. Then f ({0, 6}) = {f(0), f(6)} = {0, 8},
which is not a subgroup of Z10 since it is not closed (8+8 = 6 /∈ f ({0, 6})) and
it does not contain all inverses (it does not have 2, the additive inverse of 8).

10.9 Using Theorem 10.2, Part 5

|Kerf | = 2, but f is not a 2-to-1 mapping because only one element in Z12, 3,
is mapped to 9 ∈ Z10. A 2-to-1 mapping would send exactly two elements in
Z12 to each element in Z10.

10.10 Using Theorem 10.2, Part 6

|Z12| = 12. However, f(Z12) = {0, 3, 6, 9, 2, 5, 8, 1, 4, 7} = Z10, which has order
10. Since 10 does not divide 12, f cannot be a homomorphism.

10.11 Using Theorem 10.2, Part 7

Let K = {0, 5} be a subgroup of Z10. Then f
−1 {K}

= {0, 10, 5}, which is not
a subgroup of Z12 (it is not closed).

Conclusion

f is not a homomorphism.

11 Chapter 10, Problem 51 (presented on 3/15
during a review session)

Let G be any group, Z(G) be its center, and Inn(G) = {φg : g ∈ G}, where φg
is a function from G to G de�ned as follows: for any x ∈ G,

φg(x) = gxg−1.

The function φg is called the inner automorphism of G induced by g. Each
element of g gives an inner automorphism, but it is possible to have two di�erent
elements g and h in G induce the same inner automorphism (φg(x) = φh(x) for
all x ∈ G). Inn(G) is a group whose operation is function composition read
from right to left.

To prove that
G/Z(G) ≈ Inn(G),

we need to �nd a function f from G to Inn(G) with the following properties:

12



1. f is a homomorphism (preserves operations).

2. f is onto. That is, f(G) = Inn(G).

3. Kerf = Z(G).

Once these three properties are proven, we can apply the First Isomorphism
Theorem on page 207 to show that

G/Z(G) ≈ Inn(G).

Again, when using the First Isomorphism Theorem, the domain of the homo-
morphism is G, not G/Z(G).

For g ∈ G, de�ne
f(g) = φg.

In other words, f(g) is the inner automorphism of G induced by g.

11.1 f is a homomorphism

Let g, h ∈ G. Then
f(gh) = φgh

f(g)f(h) = φg ◦ φh
In order to show that f(gh) = f(g)f(h), we need to prove that the functions
φgh and φg ◦ φh are equal. To do this, let x ∈ G. Then

φgh(x) = (gh)x(gh)−1 = ghxh−1g−1

and
φg ◦ φh(x) = φg(hxh

−1) = g(hxh−1)g−1 = ghxh−1g−1.

Thus, φgh(x) = φg ◦ φh(x) for any x ∈ G. Hence the functions φgh and φg ◦ φh
are equal, so f(gh) = f(g)f(h). Therefore, f preserves the operations, so it is
a homomorphism.

11.2 f is onto (so f(G) = Inn(G))

Let φg be any element of Inn(G). Then φg is the inner automorphism of G
induced by g ∈ G. Then by de�nition,

f(g) = φg,

so f is onto.
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11.3 Kerf = Z(G)

Before we begin, let us point out that the identity element of Inn(G) is φe, the
function given by

φe(x) = exe−1 = x.

To determine Kerf , we start by looking at an element g ∈ Kerf . Then f(g) is
the identity element of Inn(G):

f(g) = φe.

We need to show that g ∈ Z(G). Since f(g) = φg, we have

φg = φe.

Therefore, for any x ∈ G, we have

gxg−1 = exe−1 = x

gxg−1 = x

gx = xg.

Therefore, g ∈ Z(G). This implies that Kerf ⊆ Z(G).
Now, if g ∈ Z(G), then for any x ∈ G, gx = xg, so

φg(x) = gxg−1 = (gx)g−1 = (xg)g−1 = x(gg−1) = x = exe−1 = φe(x)

so
f(g) = φg = φe,

and hence g ∈ Kerf . Thus, Z(G) ⊆ Kerf , and therefore Kerf = Z(G).

11.4 Conclusion

Since f is a homomorphism, we can use Theorem 10.3 on page 207 to say

G/Kerf ≈ f(G).

Since f(G) = Inn(G), and Kerf = Z(G), we have

G/Z(G) ≈ Inn(G).
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