
Midterm 1 Solutions

February 5, 2012

Problem 1

The check digit of 3946022518 is a number r where 0 ≤ r ≤ 8 and 3946022518 ≡
rmod 9. We can �nd the remainder of this number mod 9 by adding the digits:

3946022518 ≡ 3 + 9 + 4 + 6 + 0 + 2 + 2 + 5 + 1 + 8 ≡ 40 ≡ 4mod 9

so the check digit is 4.

Problem 2

We need to �nd two elements x ∈ U(999) = {a ∈ N | a < 999& gcd (a, 999) = 1}
such that x2 = 1, the identity element of U(999).

Let us forget about modular arithmetic for a moment and solve x2 = 1 with
algebra: x = 1 and x = −1. x = 1 ∈ U(999) (gcd(1, 999) = 1), but −1 /∈ U(999)
since −1 is not a natural number. Here, we need modular arithmetic to replace
x = −1 by a number between 0 and 998. Since

−1 ≡ 998mod 999

we can try x = 998 as our other solution. But we're not done yet - is 998 ∈
U(999)? That is, is gcd(998, 999) = 1? We can answer this in two ways:

Divisors of 999, 998, and their Di�erence

Suppose d is a positive integer that divides both 999 and 998. Then d must
divide 999− 998 = 1. The only positive number that can do this is d = 1, so 1
is the only common divisor of 999 and 998. It must be their greatest common
divisor.

Euclidean Algorithm

For the �rst step of the Euclidean algorithm, we will use a = 999 and b = 998.
Then we have
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999 = (998)(1) + 1

Next, we use the algorithm again with a = 998 (the previous value of b) and
b = 1 (the remainder from the previous line)

998 = (1)(998) + 0

The last nonzero remainder when using the Euclidean algorithm is 1, so 1 =
gcd (999, 998).

Either way, since gcd (999, 998) = 1, 998 ∈ U(999) and 9982 ≡ (−1)2 ≡
1mod 999. Thus, our two solutions are x = 1 and x = 998.

Problem 3

With Induction

Base case n = 1:

3123 − 1mod 23 = 24− 1mod 23 = 23mod 23 = 0mod 23

Suppose the statement is true for n = k. That is,

3k23k − 1mod 23 = 0mod 23

Let us plug in n = k + 1 on the left hand side and try to factor it:

3(k+1)23(k+1) − 1mod 23 = 3123(3k23k)− 1mod 23

= 24(3k23k)− 1mod 23

There are a few ways to proceed.

1. Split 24 = 23 + 1 and use the fact that multiples of 23 are congruent to
zero mod 23:

= (23 + 1)
(
3k23k

)
−1mod 23 = 23(3k23k)+3k23k−1mod 23 = 0+3k23k−1mod 23

By the inductive hypothesis, this equals zero mod 23.

2. Since 23 = 0mod 23, we can safely subtract 23 without changing anything
(it is as if we were adding zero):

24(3k23k)−1−23mod 23 = 24(3k23k)−24mod 23 = 24(3k23k−1)mod 23

After factoring out 24, we use the inductive hypothesis to get 24(0)mod 23 =
0mod 23.

This proves the statement for n = k+1. Therefore, by induction, the statement
is true for any natural number n.
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Without Induction

We use the fact that 24mod 23 = 1mod 23:

3n23n−1mod 23 =
(
3 · 23

)n−1mod 23 = 24n−1mod 23 = 1n−1mod 23 = 0mod 23

Problem 4

Let us draw what each re�ection does. Remember, F1F2 means F2 �rst, then F1

second - in D5 and any group whose group operation is function composition,
we read from right to left.

Label the vertices counter-clockwise. 1 is the top vertex.

Do F2 �rst. That is a re�ection across a line through where vertex 2 starts.
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Now we apply F1. This is a re�ection about a line through the original
location of vertex 1 - the top vertex.
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We see that the end result is a rotation - notice that the labels go up counter-
clockwise. To determine how many degrees we rotated the pentagon counter-
clockwise, we take 360, divide it by 5, then multiply by 3 (since vertex 1 moves
three places counter-clockwise). Thus, F1F2 is rotation by 216 degrees counter-
clockwise.
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Problem 5

The Cayley Table

Let Ma =

(
1 a
0 1

)
, where a ∈ Z4 = {0, 1, 2, 3}, a group whose operation is

addition mod 4. Then

MaMb =

(
1 a
0 1

)(
1 b
0 1

)
=

(
1 a+ b
0 1

)
For example,

M1M2 =

(
1 3
0 1

)
M2M3 =

(
1 5
0 1

)
=

(
1 1
0 1

)
mod 4

Here is the table: (
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
1 3
0 1

)
(

1 0
0 1

) (
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
1 3
0 1

)
(

1 1
0 1

) (
1 1
0 1

) (
1 2
0 1

) (
1 3
0 1

) (
1 0
0 1

)
(

1 2
0 1

) (
1 2
0 1

) (
1 3
0 1

) (
1 0
0 1

) (
1 1
0 1

)
(

1 3
0 1

) (
1 3
0 1

) (
1 0
0 1

) (
1 1
0 1

) (
1 2
0 1

)

The Order of

(
1 2
0 1

)
Now let us compute the order of

(
1 2
0 1

)
. First,

(
1 2
0 1

)2

=

(
1 0
0 1

)
(look in the table). Since

(
1 2
0 1

)
raised to the second power is

(
1 0
0 1

)
,

the identity element of G, the order of

(
1 2
0 1

)
must be 2.

Problem 6

Using Linear Combinations

To show that gcd(7n+ 4, 2n+ 1) = 1, we need to �nd integers s and t such that
s(7n+ 4) + t(2n+ 1) = 1. Let us expand the left hand side:

7sn+ 4s+ 2tn+ t
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Put the terms being multiplied by n together:

n(7s+ 2t) + 4s+ t

We want this to equal 1, so we need to get rid of n. We can do this by requiring
that

7s+ 2t = 0

If that is the case, then all that is left over is 4s+ t. We want this to equal 1:

4s+ t = 1

Thus, s and t are integers that must satisfy the system of equations

7s+ 2t = 0

4s+ t = 1

We can solve this by multiplying the second equation by 2 and subtracting it
from the �rst equation to get

−s = −2

s = 2

Therefore,
t = −7

Let's plug these in:

(2)(7n+ 4) + (−7)(2n+ 1) = 14n+ 8− 14n− 7 = 1

Thus, we can �nd integers s and t so that s(7n+4)+ t(2n+1) = 1. This means
that the greatest common divisor of 7n+ 4 and 2n+ 1 is at most 1. So it must
be 1.

Using the Euclidean Algorithm

7n+ 4 = (2n+ 1)(3) + (n+ 1)

2n+ 1 = (n+ 1)(1) + n

n+ 1 = (n)(1) + 1

n = (1)(n)

Thus, gcd(7n+ 4, 2n+ 1) = 1 for any positive integer n.
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