Midterm 1 Solutions

February 5, 2012

Problem 1

The check digit of 3946022518 is a number r where $0 \leq r \leq 8$ and $3946022518 \equiv$ $r \bmod 9$. We can find the remainder of this number mod 9 by adding the digits:

$$
3946022518 \equiv 3+9+4+6+0+2+2+5+1+8 \equiv 40 \equiv 4 \bmod 9
$$

so the check digit is 4 .

Problem 2

We need to find two elements $x \in U(999)=\{a \in \mathbb{N} \mid a<999 \& \operatorname{gcd}(a, 999)=1\}$ such that $x^{2}=1$, the identity element of $U(999)$.

Let us forget about modular arithmetic for a moment and solve $x^{2}=1$ with algebra: $x=1$ and $x=-1 . x=1 \in U(999)(\operatorname{gcd}(1,999)=1)$, but $-1 \notin U(999)$ since -1 is not a natural number. Here, we need modular arithmetic to replace $x=-1$ by a number between 0 and 998 . Since

$$
-1 \equiv 998 \bmod 999
$$

we can try $x=998$ as our other solution. But we're not done yet - is $998 \in$ $U(999)$? That is, is $\operatorname{gcd}(998,999)=1$? We can answer this in two ways:

Divisors of 999, 998, and their Difference

Suppose d is a positive integer that divides both 999 and 998. Then d must divide $999-998=1$. The only positive number that can do this is $d=1$, so 1 is the only common divisor of 999 and 998 . It must be their greatest common divisor.

Euclidean Algorithm

For the first step of the Euclidean algorithm, we will use $a=999$ and $b=998$. Then we have

$$
999=(998)(1)+1
$$

Next, we use the algorithm again with $a=998$ (the previous value of b) and $b=1$ (the remainder from the previous line)

$$
998=(1)(998)+0
$$

The last nonzero remainder when using the Euclidean algorithm is 1 , so $1=$ $\operatorname{gcd}(999,998)$.

Either way, since $\operatorname{gcd}(999,998)=1,998 \in U(999)$ and $998^{2} \equiv(-1)^{2} \equiv$ 1 mod 999. Thus, our two solutions are $x=1$ and $x=998$.

Problem 3

With Induction

Base case $n=1$:

$$
3^{1} 2^{3}-1 \bmod 23=24-1 \bmod 23=23 \bmod 23=0 \bmod 23
$$

Suppose the statement is true for $n=k$. That is,

$$
3^{k} 2^{3 k}-1 \bmod 23=0 \bmod 23
$$

Let us plug in $n=k+1$ on the left hand side and try to factor it:

$$
\begin{gathered}
3^{(k+1)} 2^{3(k+1)}
\end{gathered}-1 \bmod 23=3^{1} 2^{3}\left(3^{k} 2^{3 k}\right)-1 \bmod 23 x\left(3^{k} 2^{3 k}\right)-1 \bmod 23
$$

There are a few ways to proceed.

1. Split $24=23+1$ and use the fact that multiples of 23 are congruent to zero $\bmod 23$:

$$
=(23+1)\left(3^{k} 2^{3 k}\right)-1 \bmod 23=23\left(3^{k} 2^{3 k}\right)+3^{k} 2^{3 k}-1 \bmod 23=0+3^{k} 2^{3 k}-1 \bmod 23
$$

By the inductive hypothesis, this equals zero mod 23 .
2. Since $23=0 \bmod 23$, we can safely subtract 23 without changing anything (it is as if we were adding zero):
$24\left(3^{k} 2^{3 k}\right)-1-23 \bmod 23=24\left(3^{k} 2^{3 k}\right)-24 \bmod 23=24\left(3^{k} 2^{3 k}-1\right) \bmod 23$
After factoring out 24, we use the inductive hypothesis to get $24(0) \bmod 23=$ $0 \bmod 23$.

This proves the statement for $n=k+1$. Therefore, by induction, the statement is true for any natural number n.

Without Induction

We use the fact that $24 \bmod 23=1 \bmod 23$:
$3^{n} 2^{3 n}-1 \bmod 23=\left(3 \cdot 2^{3}\right)^{n}-1 \bmod 23=24^{n}-1 \bmod 23=1^{n}-1 \bmod 23=0 \bmod 23$

Problem 4

Let us draw what each reflection does. Remember, $F_{1} F_{2}$ means F_{2} first, then F_{1} second - in D_{5} and any group whose group operation is function composition, we read from right to left.

Label the vertices counter-clockwise. 1 is the top vertex.

Do F_{2} first. That is a reflection across a line through where vertex 2 starts.

Now we apply F_{1}. This is a reflection about a line through the original location of vertex 1 - the top vertex.

We see that the end result is a rotation - notice that the labels go up counterclockwise. To determine how many degrees we rotated the pentagon counterclockwise, we take 360 , divide it by 5 , then multiply by 3 (since vertex 1 moves three places counter-clockwise). Thus, $F_{1} F_{2}$ is rotation by 216 degrees counterclockwise.

Problem 5

The Cayley Table

Let $M_{a}=\left(\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right)$, where $a \in \mathbb{Z}_{4}=\{0,1,2,3\}$, a group whose operation is addition mod 4. Then

$$
M_{a} M_{b}=\left(\begin{array}{cc}
1 & a \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & b \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & a+b \\
0 & 1
\end{array}\right)
$$

For example,

$$
\begin{gathered}
M_{1} M_{2}=\left(\begin{array}{ll}
1 & 3 \\
0 & 1
\end{array}\right) \\
M_{2} M_{3}=\left(\begin{array}{ll}
1 & 5 \\
0 & 1
\end{array}\right)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \bmod 4
\end{gathered}
$$

Here is the table:

| | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ |
| $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ |
| $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ |
| $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ | $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ |

The Order of $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$
Now let us compute the order of $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$. First, $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)^{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$ (look in the table). Since $\left(\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right)$ raised to the second power is $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, the identity element of G, the order of $\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ must be 2 .

Problem 6

Using Linear Combinations

To show that $\operatorname{gcd}(7 n+4,2 n+1)=1$, we need to find integers s and t such that $s(7 n+4)+t(2 n+1)=1$. Let us expand the left hand side:

$$
7 s n+4 s+2 t n+t
$$

Put the terms being multiplied by n together:

$$
n(7 s+2 t)+4 s+t
$$

We want this to equal 1 , so we need to get rid of n. We can do this by requiring that

$$
7 s+2 t=0
$$

If that is the case, then all that is left over is $4 s+t$. We want this to equal 1 :

$$
4 s+t=1
$$

Thus, s and t are integers that must satisfy the system of equations

$$
\begin{gathered}
7 s+2 t=0 \\
4 s+t=1
\end{gathered}
$$

We can solve this by multiplying the second equation by 2 and subtracting it from the first equation to get

$$
\begin{aligned}
-s & =-2 \\
s & =2
\end{aligned}
$$

Therefore,

$$
t=-7
$$

Let's plug these in:

$$
(2)(7 n+4)+(-7)(2 n+1)=14 n+8-14 n-7=1
$$

Thus, we can find integers s and t so that $s(7 n+4)+t(2 n+1)=1$. This means that the greatest common divisor of $7 n+4$ and $2 n+1$ is at most 1 . So it must be 1 .

Using the Euclidean Algorithm

$$
\begin{gathered}
7 n+4=(2 n+1)(3)+(n+1) \\
2 n+1=(n+1)(1)+n \\
n+1=(n)(1)+1 \\
n=(1)(n)
\end{gathered}
$$

Thus, $\operatorname{gcd}(7 n+4,2 n+1)=1$ for any positive integer n.

