
Midterm 2 Solutions

March 17, 2012

Problem 1

Part a)

Let us draw arrows to help us �nd the cycles:
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There are three cycles. First, we have a 4-cycle where 1 goes to 6 goes to 2 goes
to 7 goes back to 1. Next, we have a 2-cycle where 3 goes to 5 goes back to 3.
4 is �xed and will be part of a cycle of length one. Thus,

α = (1627)(35)(4) = (1627)(35).

Part b)

We can �nd the order of α by looking at the disjoint cycle form and taking the
least common multiple of the lengths of the cycles. α is a product of two cycles,
one with length 4, and the other with length 2, so

|α| = lcm (4, 2) = 4.

Part c)

To determine whether a permutation is odd or even, we need to convert it to a
product of 2-cycles and count the number of 2-cycles. A permutation that can
be written as an odd (even) number of 2-cycles is odd (even). We have

α = (1627)(35) = (17)(12)(16)(35)

which is a product of four 2-cycles. Hence α is an even permutation.
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Problem 2

Part a)

TRUE: Let a be a nonzero element of Z. Remember that the operation in Z
is addition, so when computing the order of a, we need to look for a positive
nonzero integer n such that

n · a = 0.

If there is no such integer n, then a is said to have in�nite order.
Since there are no positive nonzero integers that we can plug into n to get

the left side equal to zero (since a is nonzero), a has in�nite order.
On the other hand, 0 itself has order 1 since 1 · 0 = 0.

Part b)

FALSE: By Theorem 4.2, page 75,

∣∣a5∣∣ = |a|
gcd (|a| , 5)

=
15

gcd (15, 5)
=

15

5
= 3 6= 5.

Part c)

FALSE: Suppose for contradiction that φ is an automorphism. Then it must
preserve order:

|φ(3)| = |3| .

First, we must note that Z100 is a cyclic group (operation is addition mod 100)
generated by 1. That is, |1| = 100 in Z100. Thus, since 3 = 3 · 1,

|3| = |1|
gcd (|1| , 3)

=
100

gcd (100, 3)
=

100

1
= 100.

However,

|φ(3)| = |40| = |1|
gcd (|1| , 40)

=
100

gcd (100, 40)
=

100

20
= 5 6= 100 = |3| ,

a contradiction. Thus, φ is not an automorphism.

Part d)

TRUE: Let us try a proof by contradiction and suppose |G| is even. Then 2
divides |G|. Since G is a �nite cyclic group, we can use Theorem 4.4, page 79,
to see that G has φ(2) = 1 element of order 2, contradicting the fact that G has
no elements of order 2. Hence |G| is odd.
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Problem 3

Since G is a cyclic group and 10 divides |G|, we can use Theorem 4.4, page 79
to determine the number of elements of order 10 in G. It is

φ(10) = 4.

Problem 4

Here are multiple ways to solve this problem. All of them proceed using a proof
by contradiction where we assume there is an isomorphism and show that there
is a contradiction using Theorems 6.2 and 6.3 on pages 128 and 129.

Using Theorem 6.3

Suppose that φ : U(8) → Z4 is an isomorphism. By Theorem 6.3, since Z4 is
cyclic, then so is U(8), which is false. Hence, there is no isomorphism from U(8)
to Z4.

Using Theorem 6.2, Property 7

Suppose that φ : U(8)→ Z4 is an isomorphism. U(8) and Z4 are both �nite, so
by Theorem 6.2, property 7, U(8) and Z4 have the same number of elements of
order 2. But U(8) has three elements of order 2 (3, 5, and 7), while Z4 only has
one element of order 2 (the integer 2), a contradiction.

Using Theorem 6.2, Properties 1 and 5

Suppose that φ : U(8)→ Z4 is an isomorphism. Let us write down what φ does
to each number in U(8). First, φ(1) = 0, because 1 is the identity element of
U(8) and 0 is the identity element of Z4. Now, φ is one-to-one and onto, so
we know there is only one element a ∈ U(8) for which φ(a) = 2. We note that
a 6= 1 (since we already have φ(1) = 0), and |a| = 2 since every element other
than 1 has order 2 in U(8). Let b be another element of U(8) not equal to a
or 1. Then b has order 2 as well, so φ(b) must have order 2 in Z4. Since the
only element of order 2 in Z4 is 2, we must have φ(b) = 2, contradicting the
assumption that φ is a one-to-one function.

Problem 5

We can prove that A6, the subgroup of S6 consisting of even permutations, has
no element of order 6 by:

1. Finding all elements in S6 with order 6, using disjoint cycle structures to
keep track of elements, and then

3



2. Showing that these permutations with order 6 are odd permutations, so
they are not in A6.

In S6, the only elements whose cycle lengths have lcm 6 are of the form

(6)

(a single cycle of length 6), and

(3)(2)(1)

(a product of three disjoint cycles: a 3-cycle, a 2-cycle, and a 1-cycle). These
are in S6 because the sum of the lengths of the disjoint cycles is equal to six.

Now we need to check if these are even or odd. In general, an n-cycle can
be written as a product of n-1 2-cycles. Thus,

• A single cycle of length 6 is a product of �ve 2-cycles, and hence is odd.

• A product of a 3-cycle, a 2-cycle, and a 1-cycle is equal to a product of
three 2-cycles. The 3-cycle gives us two 2-cycles, the 2-cycle gives us one
2-cycle (itself), and the 1-cycle gives us zero 2-cycles. Hence it is odd as
well.

Hence any element of order 6 in S6 can be written as an odd number of 2-cycles,
so they are odd and cannot be in A6.

Problem 6

Let α be a 4-cycle for which α2 = (12)(34). To �nd α, it helps to start with
a circle diagram. We know 1 has to appear in the cycle, since a 4-cycle on
{1, 2, 3, 4} must use all four numbers:
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α2 takes 1 to 2. On the circle diagram, starting at a number and following one
arrow tells us what α does to that number. Following two arrows tells us what
α2 does. So in the circle diagram, if we start at 1 and follow two arrows, we
must reach 2:
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^^
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If we look at the second cycle (34) in α2, we see that in the circle diagram, if
we start at 3 and follow two arrows, we reach 4. Starting at 4 and following two
arrows will take us back to 3. But where does 3 go in the circle diagram? There
are two question marks leftover, and it turns out that 3 can go in any of them.
Let me choose the question mark in the right. Then 4 is two arrows away from
3:
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^^

This tells us that α = (1324).
We could have also placed 3 in the left:

1

��
3

@@

4

��
2

^^

This tells us that α = (1423) is another possible answer.

Problem 7

φx = φy implies x = y

Suppose that φx = φy. Then for any g ∈ G,

φx(g) = φy(g).

By de�nition of the functions,

xgx−1 = ygy−1.

We need to show that x = y. Our only clue in this problem is that the center
of G is {e}. That is, the only element in G which commutes with every other
element in G is the identity. Let us try to show x = y by somehow proving that
y−1x = e.

Since
xgx−1 = ygy−1,

let us multiply on the left by y−1 and on the right by x:

y−1xgx−1x = y−1ygy−1x
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(y−1x)g = g(y−1x).

This is true for any element g ∈ G. Hence y−1x is in the center of G:

y−1x ∈ Z(G) = {e} .

Therefore, y−1x = e, so x = y.

x = y implies φx = φy

If x = y, then x−1 = y−1, so for any g ∈ G,

φx(g) = xgx−1 = ygy−1 = φy(g).

Therefore, φx = φy.
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