Midterm 2 Solutions

March 17, 2012

Problem 1

Part a)

Let us draw arrows to help us find the cycles:

There are three cycles. First, we have a 4 -cycle where 1 goes to 6 goes to 2 goes to 7 goes back to 1 . Next, we have a 2-cycle where 3 goes to 5 goes back to 3 . 4 is fixed and will be part of a cycle of length one. Thus,

$$
\alpha=(1627)(35)(4)=(1627)(35) .
$$

Part b)

We can find the order of α by looking at the disjoint cycle form and taking the least common multiple of the lengths of the cycles. α is a product of two cycles, one with length 4 , and the other with length 2 , so

$$
|\alpha|=\operatorname{lcm}(4,2)=4 .
$$

Part c)

To determine whether a permutation is odd or even, we need to convert it to a product of 2-cycles and count the number of 2-cycles. A permutation that can be written as an odd (even) number of 2-cycles is odd (even). We have

$$
\alpha=(1627)(35)=(17)(12)(16)(35)
$$

which is a product of four 2-cycles. Hence α is an even permutation.

Problem 2

Part a)

TRUE: Let a be a nonzero element of \mathbb{Z}. Remember that the operation in \mathbb{Z} is addition, so when computing the order of a, we need to look for a positive nonzero integer n such that

$$
n \cdot a=0
$$

If there is no such integer n, then a is said to have infinite order.
Since there are no positive nonzero integers that we can plug into n to get the left side equal to zero (since a is nonzero), a has infinite order.

On the other hand, 0 itself has order 1 since $1 \cdot 0=0$.

Part b)

FALSE: By Theorem 4.2, page 75,

$$
\left|a^{5}\right|=\frac{|a|}{\operatorname{gcd}(|a|, 5)}=\frac{15}{\operatorname{gcd}(15,5)}=\frac{15}{5}=3 \neq 5
$$

Part c)

FALSE: Suppose for contradiction that ϕ is an automorphism. Then it must preserve order:

$$
|\phi(3)|=|3| .
$$

First, we must note that \mathbb{Z}_{100} is a cyclic group (operation is addition $\bmod 100$) generated by 1 . That is, $|1|=100$ in \mathbb{Z}_{100}. Thus, since $3=3 \cdot 1$,

$$
|3|=\frac{|1|}{\operatorname{gcd}(|1|, 3)}=\frac{100}{\operatorname{gcd}(100,3)}=\frac{100}{1}=100
$$

However,

$$
|\phi(3)|=|40|=\frac{|1|}{\operatorname{gcd}(|1|, 40)}=\frac{100}{\operatorname{gcd}(100,40)}=\frac{100}{20}=5 \neq 100=|3|,
$$

a contradiction. Thus, ϕ is not an automorphism.

Part d)

TRUE: Let us try a proof by contradiction and suppose $|G|$ is even. Then 2 divides $|G|$. Since G is a finite cyclic group, we can use Theorem 4.4, page 79, to see that G has $\phi(2)=1$ element of order 2 , contradicting the fact that G has no elements of order 2. Hence $|G|$ is odd.

Problem 3

Since G is a cyclic group and 10 divides $|G|$, we can use Theorem 4.4, page 79 to determine the number of elements of order 10 in G. It is

$$
\phi(10)=4 .
$$

Problem 4

Here are multiple ways to solve this problem. All of them proceed using a proof by contradiction where we assume there is an isomorphism and show that there is a contradiction using Theorems 6.2 and 6.3 on pages 128 and 129 .

Using Theorem 6.3

Suppose that $\phi: U(8) \rightarrow \mathbb{Z}_{4}$ is an isomorphism. By Theorem 6.3, since \mathbb{Z}_{4} is cyclic, then so is $U(8)$, which is false. Hence, there is no isomorphism from $U(8)$ to \mathbb{Z}_{4}.

Using Theorem 6.2, Property 7

Suppose that $\phi: U(8) \rightarrow \mathbb{Z}_{4}$ is an isomorphism. $U(8)$ and \mathbb{Z}_{4} are both finite, so by Theorem 6.2 , property $7, U(8)$ and \mathbb{Z}_{4} have the same number of elements of order 2 . But $U(8)$ has three elements of order $2(3,5$, and 7$)$, while \mathbb{Z}_{4} only has one element of order 2 (the integer 2), a contradiction.

Using Theorem 6.2, Properties 1 and 5

Suppose that $\phi: U(8) \rightarrow \mathbb{Z}_{4}$ is an isomorphism. Let us write down what ϕ does to each number in $U(8)$. First, $\phi(1)=0$, because 1 is the identity element of $U(8)$ and 0 is the identity element of \mathbb{Z}_{4}. Now, ϕ is one-to-one and onto, so we know there is only one element $a \in U(8)$ for which $\phi(a)=2$. We note that $a \neq 1$ (since we already have $\phi(1)=0$), and $|a|=2$ since every element other than 1 has order 2 in $U(8)$. Let b be another element of $U(8)$ not equal to a or 1 . Then b has order 2 as well, so $\phi(b)$ must have order 2 in \mathbb{Z}_{4}. Since the only element of order 2 in \mathbb{Z}_{4} is 2 , we must have $\phi(b)=2$, contradicting the assumption that ϕ is a one-to-one function.

Problem 5

We can prove that A_{6}, the subgroup of S_{6} consisting of even permutations, has no element of order 6 by:

1. Finding all elements in S_{6} with order 6 , using disjoint cycle structures to keep track of elements, and then
2. Showing that these permutations with order 6 are odd permutations, so they are not in A_{6}.
In S_{6}, the only elements whose cycle lengths have lcm 6 are of the form
(a single cycle of length 6), and

$$
(\underline{3})(\underline{2})(\underline{1})
$$

(a product of three disjoint cycles: a 3-cycle, a 2-cycle, and a 1-cycle). These are in S_{6} because the sum of the lengths of the disjoint cycles is equal to six.

Now we need to check if these are even or odd. In general, an n-cycle can be written as a product of n-1 2-cycles. Thus,

- A single cycle of length 6 is a product of five 2 -cycles, and hence is odd.
- A product of a 3-cycle, a 2 -cycle, and a 1-cycle is equal to a product of three 2 -cycles. The 3 -cycle gives us two 2-cycles, the 2 -cycle gives us one 2-cycle (itself), and the 1-cycle gives us zero 2-cycles. Hence it is odd as well.

Hence any element of order 6 in S_{6} can be written as an odd number of 2-cycles, so they are odd and cannot be in A_{6}.

Problem 6

Let α be a 4 -cycle for which $\alpha^{2}=(12)(34)$. To find α, it helps to start with a circle diagram. We know 1 has to appear in the cycle, since a 4 -cycle on $\{1,2,3,4\}$ must use all four numbers:

α^{2} takes 1 to 2 . On the circle diagram, starting at a number and following one arrow tells us what α does to that number. Following two arrows tells us what α^{2} does. So in the circle diagram, if we start at 1 and follow two arrows, we must reach 2 :

If we look at the second cycle (34) in α^{2}, we see that in the circle diagram, if we start at 3 and follow two arrows, we reach 4 . Starting at 4 and following two arrows will take us back to 3 . But where does 3 go in the circle diagram? There are two question marks leftover, and it turns out that 3 can go in any of them. Let me choose the question mark in the right. Then 4 is two arrows away from 3 :

This tells us that $\alpha=(1324)$.
We could have also placed 3 in the left:

This tells us that $\alpha=(1423)$ is another possible answer.

Problem 7

$\phi_{x}=\phi_{y}$ implies $x=y$
Suppose that $\phi_{x}=\phi_{y}$. Then for any $g \in G$,

$$
\phi_{x}(g)=\phi_{y}(g) .
$$

By definition of the functions,

$$
x g x^{-1}=y g y^{-1} .
$$

We need to show that $x=y$. Our only clue in this problem is that the center of G is $\{e\}$. That is, the only element in G which commutes with every other element in G is the identity. Let us try to show $x=y$ by somehow proving that $y^{-1} x=e$.

Since

$$
x g x^{-1}=y g y^{-1},
$$

let us multiply on the left by y^{-1} and on the right by x :

$$
y^{-1} x g x^{-1} x=y^{-1} y g y^{-1} x
$$

$$
\left(y^{-1} x\right) g=g\left(y^{-1} x\right) .
$$

This is true for any element $g \in G$. Hence $y^{-1} x$ is in the center of G :

$$
y^{-1} x \in Z(G)=\{e\} .
$$

Therefore, $y^{-1} x=e$, so $x=y$.
$x=y$ implies $\phi_{x}=\phi_{y}$
If $x=y$, then $x^{-1}=y^{-1}$, so for any $g \in G$,

$$
\phi_{x}(g)=x g x^{-1}=y g y^{-1}=\phi_{y}(g)
$$

Therefore, $\phi_{x}=\phi_{y}$.

