Here is a list of problems to prepare the final.

Problem 1. Prove the following propositions:

1. \(\neg(P \lor Q) \) is equivalent to \((\neg P) \land (\neg Q)\).
2. \(P \Rightarrow Q \) is equivalent to \((P \lor Q) \Rightarrow Q\).
3. \(P \land (Q \lor R) \) is equivalent to \((P \land Q) \lor (P \land R)\).

Problem 2. Prove by induction that \(\sum_{i=1}^{n} i \cdot i! = (n+1)! - 1 \), for all positive integers \(n \geq 1 \).

Problem 3. For a positive integer \(n \) the number \(a_n \) is defined inductively by

\[
a_1 = 3, \quad a_2 = 15, \quad a_n = 5a_{n-1} - 4a_{n-2} \text{ for } n \geq 2.
\]

1. Prove that \(a_n = 4^n - 1 \), for every positive integer \(n \).
2. Prove that \(3 \mid a_n \), for every positive integer \(n \).

Problem 4. For all sets \(A \) and \(B \), prove that \((A \cup B) \cap (A \cap B)^c = (A \setminus B) \cup (B \setminus A)\).

Problem 5. Prove or disprove the following statements.

1. \(\exists x \in \mathbb{R}, \forall y \in \mathbb{R}, |x - y| < 1; \)
2. \(\forall n \in \mathbb{Z}, (\exists p, q \in \mathbb{Z} \ (n = 3p \Rightarrow n = 6q)) \).

Problem 6. Define the functions \(f, g : \mathbb{R} \to \mathbb{R} \) by \(f(x) = x^2 \) and \(g(x) = x^2 - 1 \).

1. Find the functions \(f \circ f, f \circ g, g \circ f, \) and \(g \circ g \).
2. Suppose we changed the codomain of \(f \) to be \(\mathbb{R}^+ := \{x \in \mathbb{R} : x \geq 0\} \). Which of the functions in part (a) would still be well defined?
3. List all elements of the set \(\{x \in \mathbb{R} : f(g(x)) = g(f(x))\} \).

Problem 7. Let \(f : X \to Y \) be a function and let \(G_f \subset X \times Y \) be the graph of \(f \). Prove that \(\text{Im}(f) = \{y \in Y : (X \times \{y\}) \cap G_f \neq \emptyset\} \).

Problem 8. For \(n \in \mathbb{N} \), suppose that \(A \subset \mathbb{N}_{2n} \) and \(|A| = n + 1 \). Prove that \(A \) contains a pair of distinct integers \(a, b \) such that \(a \) divides \(b \). (Hint: for each element of \(A \), consider the largest odd number dividing it. You can freely use the fact that if \(n \) is an integer that is not divisible by any odd number greater than 1 then there is an integer \(k \geq 1 \) so that \(n = 2^k \).)
Problem 9. Let n be a positive integer and $1 \leq k \leq n$. Prove that
\[
\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}.
\]

Problem 10. Let $p, q \in \mathbb{Z}$ such that 3 divides $p^2 + q^2$. Use the division theorem to prove that 3 divides p and 3 divides q.

Problem 11 (Bonus). Prove that among any five points selected inside an equilateral triangle with side equal to one inch, there always exists a pair of points at distance not greater than one half an inch.