Problems IV

18. Solve the linear diophantine equation

\[6m + 10n + 15p = 1 \]

Solution: Let \(y = 10n + 15p \). Since \((10, 15) = 5\), we must have that \(y = 5x \) for some integer \(x \), and (as we shall see) we can find a solution in \(n \) and \(p \) for any \(x \). Thus, we start by solving

\[6m + 5x = 1 \]

by our usual technique. In this case we can use the readily apparent particular solution \(m_0 = 1, x = -1 \), and since 6 and 5 are already coprime we conclude that the general solution will be \(m = 1 - 5q_1, x = -1 + 6q_1 \) for \(q_1 \in \mathbb{Z} \). Next, we must solve the equation

\[10n + 15p = 5x \]

which is the same as solving

\[2n + 3p = x \]

Again, we can find a solution without much effort: \(n_0 = -x, p_0 = x \) will do. We already have divided by the gcd, so it is no surprise that 2 and 3 are coprime, and the general solution is \(n = -x + 3q_2, p = x - 2q_2 \) (with \(q_2 \in \mathbb{Z} \), of course). Substituting our solution for \(x \) from the previous paragraph, we get that the desired solutions to the original equation have the general form

\[m = 1 - 5q_1, n = 1 - 6q_1 + 3q_2, p = -1 + 6q_1 - 2q_2 \]

19. **Prove that if there are no non-zero integer solutions to the equation \(x^n + y^n = z^n \) then there are no non-zero rational solutions.**

[Prove the contrapositive: show how a rational solution lead to an integer solutions]
Solution: Following the hint, it’s enough to prove the contrapositive. So suppose $x, y,$ and z are a nonzero rational solution to $x^n + y^n = z^n$. Since they are rational numbers, we can let $x = \frac{x_1}{x_2}, y = \frac{y_1}{y_2}$, and $z = \frac{z_1}{z_2}$, where the $x_i, y_i,$ and z_i are integers with $x_2, y_2, z_2 \neq 0$.

This means that

\[\left(\frac{x_1}{x_2} \right)^2 + \left(\frac{y_1}{y_2} \right)^2 = \left(\frac{z_1}{z_2} \right)^2 \]

and clearing denominators, we get that

\[x_1^2 y_2^2 z_2^2 + y_1^2 x_2^2 z_2^2 = z_1^2 x_2^2 y_2^2 \]

In other words,

\[(x_1 y_2 z_2)^2 + (y_1 x_2 z_2)^2 = (z_1 x_2 y_2)^2 \]

so we have a nonzero (since we are multiplying the numerators—one of which is nonzero—by the nonzero denominators) integer solution.

Problems V

1. Prove, for positive integers n, that 7 divides $6^n + 1$ if and only if n is odd.

Solution: 6 is congruent to -1 modulo 7, so

\[6^n + 1 \equiv (-1)^n + 1 \text{ (mod 7)} \]

which is 1 + 1 = 2 if n is even and $-1 + 1 = 0$ if n is odd. By the definition of congruence, this proves our result.

2. Prove that, for all integers a and b, $a^2 + b^2 \equiv 0, 1, 2, 4 \text{ or } 5$ modulo 8. Deduce that there do not exist integers a and b such that $a^2 + b^2 = 12345790$.

Solution: We can check that the squares modulo 8 are 0, 1, and 4. Thus (since $4 + 4 \equiv 0$ as well) the possibilities are

\[a^2 + b^2 \equiv 0 + 0 = 0 \]
\[\equiv 0 + 1 = 1 \]
\[\equiv 1 + 1 = 2 \]
\[\equiv 0 + 4 = 4 \]
\[\equiv 1 + 4 = 5 \]

12345790 is 6 mod 8, so it cannot have this form.

4. Suppose that a positive integer is written in decimal notation as $n = a_k a_{k-1} \cdots a_2 a_1 a_0$ where $0 \leq a_i \leq 9$. Prove that n is divisible by 11 if and only if the alternating sum of its digits $a_0 - a_1 + \cdots + (-1)^k a_k$ is divisible by 11.
Solution: By assumption, we can write \(n = \sum_{i=0}^{k} a_i 10^i \). Being divisible by 11 is the same as being 0 mod 11, so we reduce this equation mod 10. But 10 \(\equiv -1 \) (mod 11), which yields

\[
n \equiv \sum_{i=0}^{k} a_i (-1)^i \pmod{11}
\]

This shows that the left hand side is 0 mod 11 if and only if the right hand side is, which is what we want.

6. **Prove that the diophantine equation** \(3x^2 + 4y^2 = 5z^2 \) **has no non-trivial (ie, \((x, y, z) \neq (0, 0, 0)) \) solutions.**

[Give a proof by contradiction. Obtain a contradiction by proving that if there is a non-trivial solution then there is a solution \((x_1, y_1, z_1) \) with \(x_1 \neq 0 \) mod 5 or \(y_1 \neq 0 \) mod 5.]

Deduce that the equation \(3x^2 + 4y^2 = 5z^2 \) **has no rational solutions.**

Solution: If \((x, y, z)\) is a nontrivial solution, we claim that one of \(x \) or \(y \) must be nonzero, as if they both are, then \(z = 0 \) as well. Now if 5 divides both \(x \) and \(y \), we substitute \(x = 5k, y = 5\ell \) \((k, \ell \in \mathbb{Z})\) to get

\[
3 \cdot 25k^2 + 4 \cdot 25\ell^2 = 5z^2
\]

Dividing by 5, we have

\[
3 \cdot 5k^2 + 4 \cdot 5\ell^2 = z^2
\]

The terms on the left hand side are both divisible by 5, so \(z^2 \), and hence \(z \) by an earlier homework problem, must be as well. This means that we can replace \((x, y, z)\) with \((\frac{x}{5}, \frac{y}{5}, \frac{z}{5})\) and still have a solution to the original equation. Repeating the process enough times to get rid of all the powers of 5 (which is possible, since one of them is nonzero) we can assume that one of \(x \) or \(y \) is not divisible by 5. So assume without loss of generality that \(x \neq 0 \) (mod 5). If we reduce the original equation mod 5, we see that

\[
3x^2 - y^2 \equiv 0 \pmod{5}
\]

or

\[
3x^2 \equiv y^2 \pmod{5}
\]

If \(x \neq 0 \) (mod 5), then \(x \) and 5 must be coprime (since 5 is a prime number), which means that there exists \(a, b \in \mathbb{Z} \) such that \(ax + 5b = 1 \). This means that \(ax \equiv 1 \) (mod 5); ie, \(x \) has an inverse mod 5. Multiplying both sides of the congruence by \(a^2 \) then yields

\[
3 \equiv (ay)^2 \pmod{5}
\]

so 3 is a square mod 5. If instead \(y \neq 0 \) (mod 5), then we can use the same trick (multiplying the equation by 3’s inverse mod 5, 2) to get that 2 is a square mod 5. Both cases provide a contradiction, so there can be no nontrivial solution to \(3x^2 + 4y^2 = 5z^2 \).
Now if $3x^2 + 4y^2 = 5$ has a rational solution, then clearing denominators as in problem 19 shows that $3x^2 + 4y^2 = 5z^2$ has a nontrivial integer solution, which we have just shown to be impossible. Therefore there are no solutions to this equation.

7. What is the last digit of 2^{1000}?

Solution: The last digit of 2^{1000} is the same as the remainder of 2^{1000} mod 10. First of all,

\[
2^{1000} \equiv (2^4)^{250} \\
\equiv 16^{250} \\
\equiv 6^{250} \pmod{10}
\]

But $6 \cdot 6 \equiv 6 \pmod{10}$ as well, and therefore (by induction, if you like) so is any positive power of 6. Thus the last digit is 6.

9. Solve the following linear congruences:

(ii) $3x \equiv 16 \pmod{18}$

Solution: $(3, 18) = 3$ does not divide 16, so there are no solutions.

10. Solve the following linear congruences:

(i) $23x \equiv 16 \pmod{107}$

Solution: Luckily, we can see easily that $23 \cdot 5 \equiv 8 \pmod{107}$, so $x \equiv 10$ is certainly a solution. But 23 and 107 are coprime, so this must be the unique solution mod 5 (for example, because if x is any other solution, we can multiply $23x \equiv 23 \cdot 10$ by an inverse of 23 mod 107 to get that $x \equiv 10 \pmod{107}$).

(ii) $234x \equiv 20 \pmod{366}$

Solution: All of these numbers at least share a common factor of two, so it is equivalent to solve $117x \equiv 10 \pmod{183}$. But 117 and 183 are both divisible by 3, so there are no solutions as 10 is not divisible by 3.

(iii) $234x \equiv 6 \pmod{366}$

Solution: Using the calculations in the previous problem, we can see that it’s equivalent to solve $39x \equiv 1 \pmod{61}$. As usual, we can do this with the Euclidean algorithm, which tells us

\[
\begin{align*}
61 &= 39 + 22 \\
39 &= 22 + 17 \\
22 &= 17 + 5 \\
17 &= 3 \cdot 5 + 2 \\
5 &= 2 \cdot 2 + 1
\end{align*}
\]
Working backwards from this, we find that $16 \cdot 61 - 25 \cdot 39 = 1$, so $x \equiv -25 \pmod{61}$, or $x \equiv 36 \pmod{61}$.

To find the solutions mod 366, we just add every possible multiple of 61 to 36 up to $5 \cdot 61$ (since adding 366 = $6 \cdot 61$ does not change the value mod 366). These are then $x \equiv 36, 97, 158, 219, 280, \text{ or } 341 \pmod{366}$.

(iv) $234x \equiv 36 \pmod{366}$

Solution: One solution mod 61 can be found from the previous problem, which says we can take $x \equiv 36 \cdot 6 \equiv 33 \pmod{61}$. Since 61 and 39 are coprime, this is the only solution mod 61. As before, this means that $x \equiv 33, 94, 155, 216, 277, \text{ or } 338 \pmod{366}$.