1 Functions

Definition: Suppose that X, Y are sets. A function (or map, mapping) from X to Y is the assignment of a unique element of Y to each element of X. If f is a function from X to Y we write $f : X \to Y$. If the function f assigns $y \in Y$ to $x \in X$, we write $y = f(x)$.

Remark: The element $y = f(x)$ in Y is called the image of x under f (or the value of f at x). The element x is called the pre-image of y. The set X is called the domain of the function f. The set Y is called the codomain.

Question: How to describe a function?

(1). Describe by table.
E.g: See page 90 in the textbook.

(2). Describe by graph.
E.g: See page 90 in the textbook.

(3). Describe by formula.
E.g: Let $f : \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^3 + 1$.

Question: Let X be a set with 3 elements, Y a set with 2 elements. How many functions are there from X to Y?

Question: Let A be a set with 2 elements. How many functions are there from A to A?

Remark: Let X be a set with m elements, Y a set with n elements. There are m^n functions from X to Y.
Remark: Sometimes a function is given by a formula and the domain (and codomain) are not specified. In this case, we always understand the domain as the subset of \(\mathbb{R} \) where the formula makes sense and take \(\mathbb{R} \) as the codomain.

E.g: Let \(f(x) = \frac{x^2}{x-1} \). Then we take the domain as \(\{ x \in \mathbb{R} \mid x \neq 1 \} \), the codomain as \(\mathbb{R} \).

Definition: Let \(f, g \) be two functions. We say they are equal, denoted by \(f = g \), if they have the same domain and codomain, and they have the same value at each point: \(f(x) = g(x) \).

Definition: Let \(f : X \to Y \) be a function and \(A \) be a subset of \(X \). Then we can define a new function \(g : A \to Y \) by \(g(a) = f(a) \) for all \(a \in A \). This function \(g \) is called the restriction of \(f \) to \(A \).

Notation: \(g = f|A \).

E.g: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = x \). Let \(h : \mathbb{R} \to \mathbb{R} \) be defined by \(h(x) = |x| \). Write \(\mathbb{R}^{\geq 0} \) for the set of nonnegative real numbers. Then

\[
f|\mathbb{R}^{\geq 0} = h|\mathbb{R}^{\geq 0}
\]

Definition: Let \(f : X \to Y \) be a function. The image of \(f \), denoted by \(\text{Im} f \) is defined by

\[
\text{Im} f = \{ f(x) \mid x \in X \}.
\]

Remark: We always have \(\text{Im} f \subset Y \). When \(\text{Im} f = Y \), we say \(f \) is surjective.

E.g: Let \(f : \mathbb{R} \to \mathbb{R} \) be defined by \(f(x) = \sin x \). Then \(\text{Im} f = [-1, 1] \).

Definition: Let \(f : X \to Y \) be a function. The graph of \(f \), denoted by \(G_f \) is defined by

\[
G_f = \{ (x, y) \in X \times Y \mid y = f(x) \} = \{ (x, f(x)) \mid x \in X \}.
\]

2 Composition of functions

Definition: Given two functions \(f : X \to Y \) and \(g : Y \to Z \), the composite of \(f \) and \(g \), denoted by \(g \circ f : X \to Z \), is defined by

\[
g \circ f(x) = g(f(x)) \text{ for all } x \in X.
\]
E.g: Let $f : \mathbb{R} \to \mathbb{R}$ be $f(x) = x^4$, $g : \mathbb{R} \to \mathbb{R}$ be $g(x) = x + 1$. Then

$$f \circ g(x) = (x + 1)^4; g \circ f(x) = x^4 + 1; f \circ f(x) = x^{16}, g \circ g(x) = x + 2.$$

Proposition: Let $f : X \to Y, g : Y \to Z$ and $h : Z \to W$ be functions. Then

$$(h \circ g) \circ f = h \circ (g \circ f).$$