Solutions for Problems 1, Ex. 4, 5, 7.

Problems I, Ex. 4 (p. 53)

Prove the following statement concerning positive integers \(a, b, \) and \(c. \)

(i) \((a \text{ divides } b) \text{ and } (a \text{ divides } c) \Rightarrow a \text{ divides } (b+c).\)

(ii) \((a \text{ divides } b) \text{ or } (a \text{ divides } c) \Rightarrow a \text{ divides } (bc).\)

Let \(a, b, \) and \(c \) be positive integers.

(i) **Proof.** Suppose that \(a \) divides \(b \) and \(a \) divides \(c. \) Then by the definition of divides, we have \(b = aq_1 \) and \(c = aq_2 \) for some integers \(q_1 \) and \(q_2. \) Notice that \(b + c = a(q_1 + q_2), \) so \(b + c = a(q_1 + q_2) \) by distributivity. The sum of two integers is an integer, so \(q_1 + q_2 \) is an integer. Therefore \(a \) divides \(b + c \) by the definition of divides. ■

(ii) **Proof.** Suppose that \(a \) divides \(b \) or \(a \) divides \(c. \) Then by the definition of divides, we have \(b = aq_1 \) or \(c = aq_2 \) for some integers \(q_1 \) and \(q_2. \) If \(b = aq_1, \) then \(bc = a(cq_1), \) so \(a \) divides \(bc. \) Otherwise, if \(c = aq_2, \) then \(bc = a(bq_2), \) so \(a \) divides \(bc. \) Therefore, \(a \) divides \(bc \) because it is true in all (i.e., both) cases. ■
Problems 1, Ex. 5 (p. 53)

Which of the following conditions are necessary for the positive integer \(n \) to be divisible by 6 (proofs not necessary)?

(i) 3 divides \(n \).
(ii) 9 divides \(n \).
(iii) 12 divides \(n \).
(iv) \(n = 12 \).
(v) 6 divides \(n^2 \).
(vi) 2 divides \(n \) and 3 divides \(n \).

Recall that “\(P \) is necessary for \(Q \)” means “\(Q \) implies \(P \)”. So this exercise is asking, “Given that 6 divides \(n \), which of the following conditions are true?”

The answer is conditions (i), (v), and (vi). Proofs are not required, but here they are anyway:

(i) Suppose that 6 divides \(n \). Then \(n = 6q \) for some integer \(q \), so \(n = 3(2q) \). Therefore 3 divides \(n \).

(v) Suppose that 6 divides \(n \). Then \(n = 6q \) for some integer \(q \), so \(n^2 = 6(6q^2) \). Therefore 6 divides \(n^2 \).

(vi) Suppose that 6 divides \(n \). Then \(n = 6q \) for some integer \(q \), so \(n = 2(3q) \) and \(n = 3(2q) \). Therefore 2 divides \(n \) and 3 divides \(n \).
Problems I, Ex. 7 (p. 53)

Prove by contradiction the following statement concerning an integer n: n^2 is even $\Rightarrow n$ is even. [You may suppose that an integer n is odd if and only if $n = 2q + 1$ for some integer q. This is proved later as Proposition 11.3.4.]

Proof. Let n be an integer, and suppose that n^2 is even. Assume for contradiction that n is odd. Then $n = 2q + 1$ for some integer q, so

$$n^2 = (2q + 1)^2$$
$$= 4q^2 + 4q + 1$$
$$= 2(2q^2 + 2q) + 1,$$

where the last two equalities are by distributivity. Hence n^2 is odd, which contradicts n^2 being even. Therefore our assumption was false; instead, n must be even. \blacksquare