3. Functions of a Complex Variable

Let \(S \subseteq \mathbb{C} \).

A function \(f: S \rightarrow \mathbb{C} \) is a rule
\[
S \ni z \mapsto w = f(z) \in \mathbb{C}.
\]

We will call \(f \) a function defined on \(S \).

(f will be assumed to take values in \(\mathbb{C} \).

Convention:
\[
zeq z = x + iy
\]
\[
w = u + iv
\]

\(\leadsto \) we write
\[
f(z) = u(x,y) + iv(x,y) = w
\]

we can think of \(f(z) \) as being two real functions of two real variables \((x, y)\).

\[
u(x,y) = \text{Re} \ f(z) , \quad v(x,y) = \text{Im} \ f(z)
\]

Examples:

1. \(f(z) = z^2 \) \((S = \mathbb{C})\)
\[
z^2 = (x + iy)^2 = x^2 - 2ixy - y^2
\]
\(\leadsto \)
\[
u(x,y) = x^2 - y^2 , \quad v(x,y) = 2xy.
\]
2. \(f(z) = \frac{1}{z} \quad (S = \{ z \neq 0 \}) \)

\[\frac{1}{z} = \frac{1}{z + iy} = \frac{z - iy}{z^2 + y^2} \]

\[\Rightarrow u(x, y) = \frac{x}{x^2 + y^2}, \quad v(x, y) = \frac{-y}{x^2 + y^2} \]

Sometimes it is convenient to use polar coordinates and write (for \(z \neq 0 \))

\[f(z) = f(re^{i\theta}) = u(r, \theta) + iv(r, \theta) \]

Example: \(f(z) = \frac{1}{z}, \quad z \neq 0 \)

\[\frac{1}{z} = \frac{1}{re^{i\theta}} = \frac{1}{r}e^{-i\theta} = \frac{1}{r} \left(\cos \theta - i \sin \theta \right) \]

\[\text{use the conjugate of Euler's formula} \]

\[\Rightarrow u(r, \theta) = \frac{\cos \theta}{r}, \quad v(r, \theta) = \frac{-\sin \theta}{r} \]

Functions as transformations

Sometimes it is helpful to view a particular function as a transformation of the complex plane.
Examples:

1. \(f(z) = z + i \)
 \(\Rightarrow \) translation by \(i \)

2. \(f(z) = iz \)
 \(\Rightarrow \) rotation by \(\frac{\pi}{2} \) (counter-clockwise)

Functions as mappings

Frequently we think of complex functions as mappings from (part of) the “\(z \)-plane” to (part of) the “\(w \)-plane.”
Example: \(f(z) = z^2 \)

(a) Find the image under \(f \) of the line \(\Re z = 13 \).

\[\Rightarrow \Re z = 13 = \Re (1+it) : t \in \mathbb{R} \]

\[f(1+it) = (1+it)^2 = 1 + 2it - t^2 = u(t) + iv(t) \]

\[\Rightarrow u(t) = 1 - t^2, \quad v(t) = 2t \]

\[\overset{\text{parametrizes the curve}}{\Rightarrow} \quad u = 1 - \frac{v^2}{4}, \text{ a sideways parabola} \]

Remark: Since \((-z)^2 = z^2\), the line \(\Re z = -13 \) has exactly the same image.
(b) Find the preimage (inverse image) under f of the line $\text{Re}(w) = 13$.

\[f(z) = z^2 = x^2 - y^2 + 2ixy, \]
\[u(x, y) = x^2 - y^2, \quad v(x, y) = 2xy \]
\[\Rightarrow u = x^2 - y^2 = 1 \]
\[\text{unit hyperbola} \]

Example: $f(z) = e^z = e^x e^{iy}$, $z = x + iy$

\[f(c + iy) = e^c e^{iy} \]

\[\text{Circle, center O} \]

\[\text{Phase} \]
\[f(x + ic) = e^x e^{ic} \]

L \rightarrow \text{recall} \quad \lim_{x \to \infty} e^x = \infty \quad \lim_{x \to -\infty} e^x = 0. \]