Page 71

4(a) Let \(z = re^{i\theta} \). Then, \(f(z) = \frac{1}{z^4} = \frac{1}{r^4} e^{-4i\theta} = \frac{1}{r^4} \cos(4\theta) - i\frac{1}{r^4} \sin(4\theta) = u(r, \theta) + iv(r, \theta) \). Then, observe that \(u_r = -4r^{-5}\cos(4\theta) \), \(u_\theta = -4r^{-4}\sin(4\theta) \) and \(v_r = 4r^{-5}\sin(4\theta) \), \(v_\theta = -4r^{-4}\cos(4\theta) \). Now clearly all partial derivatives are continuous and it’s easy to check that \(ru_r = v_\theta \) and \(u_\theta = -rv_r \) for all \(\theta \) and \(r \neq 0 \). Therefore, \(f \) is differentiable everywhere in the domain and \(f'(z) = e^{-i\theta} (u_r + iv_r) = e^{-i\theta} (-4r^{-5}\cos(4\theta) + 4r^{-5}i\sin(4\theta)) = -4r^{-5} e^{-i\theta} e^{-4i\theta} = -\frac{4}{r} e^{-i\theta} = -\frac{4}{z^5} \).

Page 76

1(a) When \(z = x + iy \) we have \(f(z) = (3x + y) + i(3y - x) = u(x, y) + iv(x, y) \). Then, observe that \(u_x = 3, u_y = 1 \) and \(v_x = -1, v_y = 3 \). Then, clearly all partial derivatives are continuous and it’s easy to see that \(u_x = v_y \) and \(u_y = -v_x \) for all \(x, y \in \mathbb{R} \). Hence, \(f \) is differentiable everywhere, hence entire and \(f'(z) = u_x + iv_x = 3 - i \).

2(a) Let, \(f(z) = xy + iy = u(x, y) + iv(x, y) \) and observe that \(u_x = y, u_y = x \) and \(v_x = 0, v_y = 1 \). Assume that \(f \) is analytic at some point \(P \) on \(\mathbb{C} \). Then, in some neighbourhood of \(P \), Cauchy -Riemann equations should be satisfied. Hence, in that neighbourhood \(y = 1 \) and \(x = 0 \). But, this is a single point and this is not satisfied by any neighbourhood. Contradiction !! Hence, \(f \) is nowhere analytic.

Page 79

1. If \(f \) is analytic on \(D \) it satisfies the Cauchy-Riemann equations and \(u, v \) twice continuously partially differentiable. So, we have \(ru_r = v_\theta \) and \(\frac{1}{r} u_\theta = -v_r \). Let’s partially differentiate above two equations by \(r \) and \(\theta \) respectively.
Then, we get \(ru_{rr} + u_r = v_{\theta r} \) and \(-\frac{1}{r} u_{\theta \theta} = v_{r \theta} \). But, we know that \(v_{r \theta} = v_{\theta r} \). Hence, \(ru_{rr} + u_r = -\frac{1}{r} u_{\theta \theta} \). Then, we have \(r^2 u_{rr} + ru_r + u_{\theta \theta} = 0 \) as desired.

And also, as \(f \) is analytic on \(D \), so is \(-if = v - iv \). Then, \(v \) is the real part of the analytic function \(-if \). Hence, by the above result \(v \) should also satisfy the same equation.