Chapter 2.4

Wednesday, September 11, 2019 12:50 PM

\[\text{Cauchy Sequence} \]

Defn: A sequence \(\{s_n\} \) is called a Cauchy sequence if for each \(\varepsilon > 0 \), \(\exists N \in \mathbb{N} \) such that
\[m, n > N \Rightarrow |s_n - s_m| < \varepsilon. \]

Lemma 10.9

Convergent sequences are Cauchy sequences.

Pf. Let \(\{s_n\} \) be a convergent sequence. Write \(L := \lim s_n. \)

Let \(\varepsilon > 0. \) Then by defn of limit, \(\exists N \in \mathbb{N} \) s.t.
\[n > N \Rightarrow |s_n - L| < \frac{\varepsilon}{2}. \]

We may also write
\[m > N \Rightarrow |s_m - L| < \frac{\varepsilon}{2}. \]

So \(m, n > N \Rightarrow |s_n - s_m| \leq |s_n - L| + |L - s_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \)

Thus \(\{s_n\} \) is a Cauchy sequence.

Lemma 10.10

Cauchy sequences are bounded.

Pf. Assume \(s_n \to L. \)

Choose \(\varepsilon = 1. \) Then \(\exists N \in \mathbb{N} \) s.t.
\[m, n > N \Rightarrow |s_n - s_m| < 1. \]
Choose \(r = 1 \). \(\cdots \)

\[m, n > N \implies |S_n - S_m| < 1. \]

Fix \(N_0 \in \mathbb{N} \) s.t. \(N_0 > N \). Then

\[n \geq N_0 \implies n > N \implies |S_n - S_{N_0}| < 1 \]

By triangle inequality,

\[|S_n| - |S_{N_0}| \leq |S_n - S_{N_0}| < 1 \]

Thus \(|S_n| < |S_{N_0}| + 1 \) if \(n \geq N_0 \).

Let \(M = \max \{ |S_1|, \ldots, |S_{N_0}| - 1, |S_{N_0} + 1| \} \).

Then \(|S_n| \leq M, \forall n \in \mathbb{N} \).

Thm 10.11

\(\{S_n\} \) is a convergent sequence \(\iff \{S_n\} \) is a Cauchy sequence.

Pf:

1. “\(\Rightarrow \)”

 This part is already proved in Lemma 10.9.

2. “\(\Leftarrow \)” Assume \(\{S_n\}\) is a Cauchy sequence

 By Thm 10.7, we only need to prove

 \[\liminf S_n = \limsup S_n. \quad (1) \]

Let \(\varepsilon > 0 \). Since \(\{S_n\} \) is a Cauchy sequence,

\[\exists N \in \mathbb{N} \text{ s.t. } m, n > N \implies |S_n - S_m| < \varepsilon. \]

In particular,

\[S_n < S_m + \varepsilon, \forall n, m > N. \]

Thus \(S_n + \varepsilon \) is an upper bound for \(\{S_n : n > N\} \).

\[\implies V_N = \sup \{S_n : n > N\} \leq S_n + \varepsilon, \forall m > N. \]

In this situation, \(\varepsilon < 0 \). \(\forall m > N. \)
\[\Rightarrow V_N = \sup \{ S_n : n > N \} \leq s_{m+2} \cdot 3^{m/N}. \]

Note this implies \[V_N - 2 \leq S_m \quad \forall m > N. \]

Hence \[V_N - 3 \leq \inf \{ S_m : m > N \} = u_N. \] Thus

\[\limsup S_n \leq V_N \leq u_N + 3 \leq \liminf S_n + 3. \]

\[\Rightarrow \limsup S_n \leq \liminf S_n + 3 \]

But this holds for all \(\varepsilon > 0 \), we have \(\limsup S_n \leq \liminf S_n \).

The opposite inequality always holds, so we have established (1).