\section{18 properties of Continuous Functions}

\textbf{Defn:} Let $D \subseteq \mathbb{R}$ nonempty, $f: D \rightarrow \mathbb{R}$ a function.

We say f is bounded on D if $\exists M > 0$ s.t.

$$|f(x)| \leq M \text{ for all } x \in D.$$

\textbf{Thm 18.1} Let f be a continuous function from $[a,b]$ to \mathbb{R}.

Then

1. f is bounded on $[a,b]$.

2. The function f achieves its maximum and minimum values on $[a,b]$. That is,

$$\exists x_0, y_0 \in [a,b] \text{ s.t.}$$

$$f(x_0) \leq f(x) \leq f(y_0) \text{ for all } x \in [a,b].$$

\textbf{Pf:} Assume f is not bounded on $[a,b]$. Then for each $n \in \mathbb{N}$, n is not an upper bound for $|f|$ and thus

$$\exists \text{ some } x_n \in [a,b] \text{ s.t. } |f(x_n)| > n.$$

Consider $(x_n)_{n=1}^{\infty}$. By Bolzano-Weierstrass Thm, (x_n) has a subsequence (x_{n_k}) that converges to some real number x_0

\textbf{Claim:} $\lim x_{n_k} = x_0 \in [a,b].$

\textbf{Pf of claim:} Since $a \leq x_{n_k} \leq b$ for all k

$$\Rightarrow a \leq \lim x_{n_k} \leq b.$$

Since $x_0 \in [a,b]$ and $f(x)$ is continuous in $[a,b]$

$$\Rightarrow f \text{ is continuous at } x_0.$$
Since \(x_0 \in [a, b] \) and \(f(x) \) is continuous in \([a, b]\)

\[\Rightarrow f \text{ is continuous at } x_0 \]

Hence \(f(x_n) \to f(x_0) \)

But \(|f(x_n)| > n_k > k \Rightarrow \lim_{k \to +\infty} |f(x_n)| = +\infty \)

This is a contradiction. Thus \(f \) is bounded.

\(\Xi \) Consider \(\{f(x) : x \in [a, b]\} \). This is a bounded set.

By Completeness axiom, \(\sup \{f(x) : x \in [a, b]\} \) exists

Write \(M = \sup \{f(x) : x \in [a, b]\} < +\infty \).

Claim: \(\exists (y_n) \text{ in } [a, b] \text{ s.t. } f(y_n) \to M. \)

pf of Claim: Since \(M - \frac{1}{n} \) is NOT an upper bound.

\[\Rightarrow \exists y_n \in [a, b] \text{ s.t. } f(y_n) > M - \frac{1}{n} \]

Note \(M - \frac{1}{n} < f(y_n) < M \Rightarrow f(y_n) \to M. \)

By Bolzano–Weierstrass thm, \(\exists \) a subsequence \(\{y_{nk}\} \) of

\(\{y_n\} \text{ s.t. } y_{nk} \to y_0. \) As before, we know \(y_0 \in [a, b]. \)

Since \(f \) is continuous at \(y_0 \), \(\Rightarrow f(y_0) = \lim f(y_{nk}) \Rightarrow M. \)

This proves the existence of \(y_0 \) in \(\Xi \)

Ex: prove the existence of \(x_0. \)

Remark: It is important that \(\text{dom}(f) \) is a closed interval \([a, b]\).

E.g. 1. \(f(x) = \frac{1}{x} \) on \((0, 1)\). Then \(f \) is NOT bdd, has no maximum/minimum on \((0, 1)\).

E.g. 2. \(f(x) = x^2 \) on \((-1, 1)\). Then \(f \) is bdd, but \(f \)

\[\text{maximum } \leq (0, 1) \]
Thm 18.2 (Intermediate Value Theorem, I.V.T.)

If \(f \) is a continuous function on an interval \(I \).
Assume \(a, b \in I, a < b \) and \(f(a) \neq f(b) \).
Then for any \(y \) between \(f(a) \) and \(f(b) \), \(\exists c \in (a, b) \) s.t
\[f(c) = y. \]

Pf: We will suppose \(f(a) < f(b) \) (The Case \(f(a) > f(b) \) is similar).

Let \(f(a) < y < f(b) \). Set \(S = \{ x \in [a, b] : f(x) < y \} \).

Then note \(a \in S, \Rightarrow S \neq \emptyset \); \(b \notin S \).
Write \(x_0 = \text{sup } S \) (why exists?) Then \(x_0 \in [a, b] \).

Since \(x_0 - \frac{1}{n} \) is not an upper bound for \(S \)
\[\Rightarrow \exists S_n \subset S \text{ s.t } x_0 - \frac{1}{n} < S_n \leq x_0. \]

Then \(S_n \to x_0 \), and \(f(S_n) \to y \)

By continuity of \(f \) at \(x_0 \), \(f(x_0) = \lim f(S_n) \leq y \) (1)

Let \(t_n = \min \{ b, x_0 + \frac{1}{n} \} \). Since \(x_0 \leq t_n \leq x_0 + \frac{1}{n} \)
\[\Rightarrow t_n \to x_0 \]

Therefore, by continuity of \(f \) at \(x_0 \), \(\Rightarrow \)
\[f(x_0) = \lim f(t_n) \]

But \(t_n \notin S \) (why?), \(\Rightarrow f(t_n) \geq y, \forall n \)
\[\Rightarrow f(x_0) = \lim f(t_n) \geq y \] (2)
By (1), (2), \(f(x_0) = y \).

Corollary 18.3. If \(f \) is a continuous function on an interval \(I \), then \(f(I) = \{ f(x) : x \in I \} \) is also an interval or a single pt.

Pf: If \(f \) is a constant function, then \(f(I) \) is a single pt.

Now assume \(f \) is not constant. By I. V. T \(\Rightarrow \)

The set \(J = f(I) \) has the property

If \(y_0 < y_1 \) in \(J \) and \(y_0 < y < y_1 \) \(\Rightarrow \) \(y \in J \) \((*) \)

Note \(\inf J < \sup J \). (They might be \(-\infty, +\infty\))

Claim: For all \(\inf J < y < \sup J \), \(y \in J \).

Pf: Since \(\inf J < y < \sup J \), \(\exists y_0, y_1 \in J \),

s.t. \(y_0 < y < y_1 \). Hence \(y \in J \)

Thus \(J \) must be one of \((\inf J, \sup J)\), \((\inf J, \sup J]\), \([\inf J, \sup J)\), \([\inf J, \sup J]\).

E.g. Let \(f \) be a continuous function from \([0,1]\) to \([0,1]\).

prove \(f \) has a fixed pt in \([0,1]\). (That is, \(\exists x_0 \in [0,1] \), s.t. \(f(x_0) = x_0 \)).

Pf: Let \(g(x) = f(x) - x \). Then \(g(x_0) = f(x_0) - x_0 \geq 0 \)
\[Pf: \] Let \(g(x) = f(x) - x \). Then \[\int g' = \int (f' - 1) = f(x) - x \leq 0. \]

Case I. If \(g(0) = 0 \) or \(g(1) = 1 \), then \(f(x) \) has a fixed pt at 0 or 1.

Case II. If \(g(0) > 0 \) and \(g(1) < 0 \), then by I.V.T.

\[\Rightarrow \exists \text{ some } 0 < x_0 < 1. \text{ s.t. } g(x_0) = 0. \]

This implies \(f(x_0) = x_0 \)

E.g. Let \(n > 1 \) be an odd positive integer.

\[f(x) = x^n + x + 1 \]

prove \(\exists x_0 \in \mathbb{R} \) s.t. \(f(x_0) = 0. \)

Pf. Note \(f(-1) = -1, f(1) = 1 \). Thus by I.V.T., \(\exists -1 < x_0 < 1. \text{ s.t. } f(x_0) = 0. \)

E.x: Read Thm 18.4 - 18.6.