§19 Uniform Continuity part I.

Recall one version of the defn of continuity:

Let \(f : D \to \mathbb{R} \) be a function. We say \(f \) is continuous in \(D \), if at every point \(x_0 \in D \), for \(\forall \varepsilon > 0 \), there exists \(\delta > 0 \) s.t \(y \in D \) and \(|y - x_0| < \delta \Rightarrow |f(y) - f(x_0)| < \varepsilon \).

Remark: Sometimes we can choose a "\(\delta \)" that is independent of \(x_0 \). That is, we can some uniform "\(\delta \)" that only depends on \(\varepsilon \), and works for all \(x_0 \in D \). Sometimes we cannot find such a "uniform \(\delta \)".

E.g. Let \(f : \mathbb{R} \to \mathbb{R} \) be \(f(x) = 2x \). Prove \(f \) is continuous on \(\mathbb{R} \) and see whether we can find such a "uniform \(\delta \)."

Pf: Fix \(x_0 \in \mathbb{R} \). We will prove \(f \) is continuous at \(x_0 \).

Let \(\varepsilon > 0 \). Choose \(\delta = \frac{\varepsilon}{2} \) (Note this "\(\delta \)" only depends on \(\varepsilon \)). Then \(|x - x_0| < \delta \Rightarrow |f(x) - f(x_0)| = |2x - 2x_0| = 2|x - x_0| < 2\delta = \varepsilon \).

Hence we have found a "uniform \(\delta \)" that works for all \(x_0 \).
E.g. Let \(f(x) = \frac{1}{x^2} : (0, +\infty) \to \mathbb{R} \).

prove \(f(x) \) is continuous on \((0, +\infty)\) and check whether we can find a "uniform\(\delta\)".

Idea of \(pf.\): Given \(\varepsilon > 0 \), we need to choose \(\delta \) s.t.

\[
|x-x_0| < \delta \implies |f(x) - f(x_0)| < \varepsilon.
\]

Note

\[
|f(x) - f(x_0)| = \left| \frac{1}{x^2} - \frac{1}{x_0^2} \right| = \frac{|x_0^2 - x^2|}{|x^2x_0^2|} = \frac{|x_0 - x|}{x^2x_0^2} \quad (1)
\]

Suppose \(\delta \leq \frac{x_0}{2} \). Then \(|x - x_0| < \delta \implies |x - x_0| < \frac{x_0}{2} \).

This implies

\[
|x| \geq |x_0| - |x - x_0| > \frac{x_0}{2}.
\]

\[
|x| \leq |x_0| + |x - x_0| < \frac{3x_0}{2}.
\]

\[
\implies |x_0 + x| = x_0 + x < \frac{5x_0}{2}.
\]

Hence by (1),

\[
|f(x) - f(x_0)| \leq \frac{|x_0 - x| \frac{5x_0}{2}}{x_0^2x_0^2} = \frac{10|x_0 - x|}{x_0^2} < \frac{10\delta}{x_0^3}.
\]

Thus we need \(\frac{10\delta}{x_0^3} \leq \varepsilon \implies \delta \leq \frac{x_0^3\varepsilon}{10} \).

Hence we can take \(\delta = \min \left\{ \frac{x_0}{2}, \frac{x_0^3\varepsilon}{10} \right\} \).
Formal pf: Exercise.

Note: In this example, δ depends on x_0. More precisely, for different values of $x_0 \in (0, +\infty)$, the value of $\delta = \min \{ \frac{x_0}{2}, \frac{x_0^2}{10} \}$ is different.

Q: If we work harder or use a better method, can we find a “uniform δ” for $f(x) = \frac{1}{x^2}$: $(0, +\infty) \rightarrow \mathbb{R}$?

A: we will prove the answer is “no”. Indeed, we will show one can never find a “uniform δ” for this function.

Before giving a detailed pf, we first introduce the following notion of uniform continuity.

Defn (19.1):

Let $f: D \rightarrow \mathbb{R}$ be a function. We say f is uniformly continuous on D if

for each $\varepsilon > 0$ there exists $\delta > 0$ s.t.

$$
\forall x, y \in D \quad |y - x| < \delta \Rightarrow |f(y) - f(x)| < \varepsilon .
$$

Sometimes we simply say that f is uniformly continuous in this sense it is understood as that f is uniformly
sometimes we simply say that \(f \) is uniformly continuous. In this case, it is understood as that \(f \) is uniformly continuous in \(\text{dom}(f) \).

Remark: \(f \) is uniformly continuous in \(D \) \iff we can find a "uniform \(\delta \)" that works for all \(x_0 \in D \).

E.g. prove \(f(x) = 2x \): \(\mathbb{R} \to \mathbb{R} \) is uniformly continuous.

Pf.: Let \(\varepsilon > 0 \). Choose \(\delta = \frac{\varepsilon}{2} \). Then

\[|x - y| < \delta \Rightarrow |f(x) - f(y)| = 2|x - y| < 2\delta = \varepsilon. \]

Thus \(f(x) \) is uniformly continuous on \(\mathbb{R} \).

Remark: Whether the function is uniformly continuous not only depends on \(f \), but also depends on \(D \).

We will show that

\(f(x) = \frac{1}{x^2} \) is uniformly continuous on \([a, +\infty) \) for any fixed \(a > 0 \).

\(f(x) = \frac{1}{x^2} \) is not uniformly continuous on \((0, 1) \) and thus uniformly continuous on \((0, +\infty) \).

E.g. prove \(f(x) = \frac{1}{x^2} \) is uniformly continuous on \([a, +\infty) \) for \(a > 0 \).

Idea: Given \(\varepsilon > 0 \), we need to find \(\delta > 0 \) s.t

Math142 Page 4
Idea: Given $\varepsilon > 0$, we need to find $\delta > 0$ s.t.

$$x, y \in [a, +\infty), \ |x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon.\$$

Note: $|f(x) - f(y)| = \frac{|y-x| |y+x|}{x^2 y^2}$\hfill (2)

Note: $x, y \in [a, +\infty) \Rightarrow$

$$\frac{|y+x|}{x^2 y^2} = \frac{\frac{y+x}{x^2 y^2}}{x^2 y^2} = \frac{1}{x^2 y^2} + \frac{1}{x y^2} \leq \frac{1}{a^3} + \frac{1}{a^3} = \frac{2}{a^3}$$

By (2) $\Rightarrow |f(x) - f(y)| \leq \frac{2}{a^3} \ |x-y| \leq \frac{2}{a^3} \delta$

We need to make $\frac{2}{a^3} \delta \leq \varepsilon \ \text{i.e.} \ \delta \leq \frac{a^3 \varepsilon}{2}$.

Formal pf: Let $\varepsilon > 0$. Choose $\delta = \frac{a^3 \varepsilon}{2}$. Then

$x, y \in [a, +\infty)$ and $|x-y| < \delta \Rightarrow$

$$|f(x) - f(y)| = \left| \frac{1}{x^2} - \frac{1}{y^2} \right| = \frac{|y-x| |y+x|}{x^2 y^2} = \frac{|y-x| (\frac{1}{x^2 y} + \frac{1}{x y^2})}{x^2 y^2} \leq \frac{|y-x|}{a^3} \frac{2}{a^3} \delta = \varepsilon.$$

Hence f is uniformly continuous on $[a, +\infty)$

E.g. prove $f(x) = \frac{1}{x^2}$ is not uniformly continuous on $(0, 1)$

$\Rightarrow f(x) = \frac{1}{x^2}$ is not uniformly continuous on $(0, +\infty)$.
Pf: We will prove the negation of (x) for \(f(x) \) on \((0, 1)\):

\[
\exists \varepsilon > 0, \text{ s.t. } \forall \delta > 0, \exists x, y \in (0, 1) \text{ satisfy } \\
| x - y | < \delta \quad \text{and} \quad | f(x) - f(y) | \geq \varepsilon .
\]

Idea: — we need to first find \(\varepsilon_0 > 0 \)

— given any \(\delta > 0 \), we need to find \(x, y \) s.t.

\(x, y \in (0, 1), \; | x - y | < \delta, \; | f(x) - f(y) | \geq \varepsilon_0 . \)

Hint: Choose \(\varepsilon_0 = 1 \) (or any smaller positive number).

Let \(x = \frac{1}{m}, \; y = \frac{1}{m+1}, \; m \text{ is some large integer.} \)

Note \(| x - y | = \frac{1}{m} - \frac{1}{m+1} = \frac{1}{m(m+1)} \to 0 \text{ as } m \to +\infty \)

But \(| f(x) - f(y) | = (m+1)^2 - m^2 = 2m+1 \geq 1 . \)

Formal pf: Choose \(\varepsilon = 1 \). Given any \(\delta > 0 \), we can find

some large \(m_0 \in N \text{ s.t. } \frac{1}{m_0(m_0+1)} < \delta . \)

Let \(x = \frac{1}{m_0}, \; y = \frac{1}{m_0+1} . \) Then

(1) \(x, y \in (0, 1) \)

(2) \(| x - y | = \frac{1}{m_0(m_0+1)} < \delta . \)

(3) \(| f(x) - f(y) | = (m_0+1)^2 - m_0^2 = 2m_0+1 > \varepsilon = 1 . \)

Hence \(f \) is not uniformly continuous on \((0, 1)\).
Hence \(f \) is not uniformly continuous on \((0, 1)\).

Thm (19.4)

If \(f \) is uniformly continuous on \(D \) and \((s_n)_{n=1}^{\infty} \) is a Cauchy sequence in \(D \), then \((f(s_n))\) is also a Cauchy sequence.

(That is, if \((s_n)_{n=1}^{\infty} \) is convergent

\[\Rightarrow (f(s_n)) \text{ is also convergent} \]

Pf: Read P146.

This gives an easier way to prove \(f(x) = \frac{1}{x^2} \) is not uniformly continuous on \((0, 1)\).

Pf: Let \(s_n = \frac{1}{n+1}, \ n \geq 1 \). Then

1. \((s_n)_{n=1}^{\infty} \subseteq (0, 1)\)
2. \(\lim s_n = 0 \) (thus \(s_n \) is Cauchy)

But

3. \(f(s_n) = (n+1)^2 \) diverges to \(+\infty \).

Hence \(f \) is not uniformly continuous on \((0, 1)\).