Problem. 17.5

Proof. (a) Let’s prove by induction. It is obviously true for \(n = 1 \), i.e., \(f(x) = x \) is continuous. Suppose \(x^n \) is continuous, then \(g(x) = x^{n+1} = x^n \cdot x \) is a multiplication of two continuous functions, so it is also continuous. That is to say, \(x^n \) is continuous for all \(n \in \mathbb{N} \).

(b) Every polynomial is a linear combination of continuous functions \(x, \ldots, x^n \) (by (a)), so it is also continuous. □

Problem. 17.7 (b)

Proof. For any \(x > 0 \), \(|x| = x \), so it is continuous at any points \(x > 0 \). For any \(x < 0 \), \(|x| = -x \), so it is also continuous at any points \(x < 0 \). We suffice to show it is continuous at \(x = 0 \). For any \(\epsilon > 0 \), pick \(\delta = \epsilon \), then for any \(x \) s.t. \(|x| < \delta \), we have \(|x| < \delta = \epsilon \), which means \(|x| \) is continuous at \(x = 0 \). Overall, \(|x| \) is continuous on \(\mathbb{R} \). □

Problem. 17.8

Proof. (a) For any \(x \) in the domain of \(f \) and \(g \), WLOG, say \(f(x) \leq g(x) \), then we have

\[
RHS = \frac{1}{2}(f(x) + g(x)) - \frac{1}{2}|f(x) - g(x)|
\]

\[
= \frac{1}{2}(f(x) + g(x)) - \frac{1}{2}[g(x) - f(x)]
\]

\[
= f(x)
\]

\[
= \min(f, g)(x) = LHS
\]

(b) Again, WLOG, suppose that \(f(x) \leq g(x) \), then \(\min(f, g)(x) = f(x) \) and \(-\max(-f, -g)(x) = f(x) \) (because \(-f(x) \geq -g(x) \)).

(c) We know that composition of continuous functions is continuous and \(|x| \) is continuous, so \(|h| \) is continuous for \(h \) is continuous. By part (a), we know that \(\min(f, g) \) is a summation of continuous, so it is also continuous. □

Problem. 17.9 (b)

Proof. Given \(\epsilon > 0 \), let \(\delta = \epsilon^2 \), then for any \(0 < x < \delta \), we have \(|f(x) - 0| = \sqrt{x} < \sqrt{\delta} = \epsilon \). □

Problem. 17.10 (b)

Proof. Consider the sequence \(x_n = \frac{1}{2^{n+\pi} \pi / 2} \), then \(x_n \to 0 \) and \(g(x_n) = \sin(x_n) = 1 \) for all \(n \). So \(\lim g(x_n) = 1 \), which is not equal to \(g(0) = 0 \), which means it is not continuous at \(x_0 = 0 \). □
Problem. 18.5 (a)

Proof. Consider the function \(h(x) = f(x) - g(x) \) on the domain (obviously it is continuous), note that \(h(a) = f(a) - g(a) \geq 0 \) and \(h(b) = f(b) - g(b) \leq 0 \). If one of \(h(a) \) and \(h(b) \) equal to 0, then \(f(a) = h(a) \) (or \(f(b) = g(b) \)). If neither \(h(a) = 0 \) nor \(h(b) = 0 \), i.e., \(h(a) > 0 \) and \(h(b) < 0 \), then by the Intermediate Value Theorem, there exists \(x_0 \in (a, b) \) s.t. \(h(x_0) = 0 \), which means \(f(x_0) = g(x_0) \). So overall, there is one \(x_0 \in [a, b] \) s.t. \(f(x_0) = g(x_0) \). \(\square\)

Problem. 18.6

Proof. Consider the function \(f(x) = x - \cos x \) (obviously it is continuous), \(f(0) = -1 < 0 \) and \(f(\pi/2) = \pi/2 > 0 \). Then by the Intermediate Value Theorem, there exists \(x_0 \in (0, \pi/2) \) s.t. \(f(x_0) = x - \cos x \), i.e., \(x_0 = \cos x_0 \). \(\square\)

Problem. 18.8

Proof. Because \(f(a)f(b) < 0 \), so WLOG, \(f(a) < 0 \) and \(f(b) > 0 \), then by the Intermediate Value Theorem, there exists \(x_0 \) between s.t. \(f(x_0) = 0 \). \(\square\)

Problem. 18.10

Proof. Define a continuous function \(g(x) = f(x+1) - f(x) \) on \([0, 1]\). Note that \(g(0) = f(1) - f(0) = f(1) - f(2) = -g(1) \). If \(g(0) = 0 \), then we can just let \(x = 0 \) and \(y = 1 \), so \(|y - x| = 1\) and \(f(1) = f(0) \). If \(g(0) \neq 0 \), then \(g(0)g(1) < 0 \), then by problem 18.8, there exists \(x_0 \in (0, 1) \) between s.t. \(g(x_0) = 0 \). So just let \(x = x_0 \) and \(y = x_0 + 1 \), we have \(|y - x| = 1\) and \(f(x) = f(y) \). \(\square\)