§ 29 The mean value theorem

Thm 29.1
Let \(f \) be defined on an open interval containing \(x_0 \).
If \(f \) assumes its maximum or minimum at \(x_0 \), and if
\(f \) is differentiable at \(x_0 \), then \(f'(x_0) = 0 \)

Pf: Suppose \(f \) is defined on \((a, b)\) where \(a < x_0 < b \).
we have two cases.

Case I: Suppose \(f \) assumes its maximum at \(x_0 \).
we need to prove \(f'(x_0) = 0 \).

Recall \(f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \)

\[= \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \]

\[= \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} \]

when \(x \to x_0^+ \), \(f(x) \leq f(x_0) \), and \(x > x_0 \)
\[\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \leq 0 \Rightarrow \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - x_0} \leq 0 \]
\[\Rightarrow f'(x_0) \leq 0 \]

when \(x \to x_0^- \), \(f(x) \leq f(x_0) \), and \(x < x_0 \)
\[\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} > 0 \Rightarrow \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} > 0 \]
\[\Rightarrow \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \Rightarrow \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} \geq 0 \]

\[\Rightarrow f'(x_0) \geq 0 \]

Therefore, \(f'(x_0) = 0 \)

Case II. Suppose \(f \) assume its minimum at \(x_0 \).

Then \(-f \) assume its maximum at \(x_0 \).

By Case I, \((-f)'(x_0) = 0 \Rightarrow f'(x_0) = 0 \).

Recall we proved the following in Chapter 3:

A continuous function on a bounded closed interval \([a,b]\) achieves its maximum and minimum. That is, \(\exists x_0, y_0 \in [a,b], \) s.t. \(f(x_0) \leq f(x) \leq f(y_0), \forall x \in [a,b]. \) \(\Leftarrow \) Thm 18.1.

Thm 29.2 (Rolle's Thm)

Let \(f \) be continuous on \([a,b]\) and differentiable on \((a,b)\). Assume \(f(a) = f(b) \). Then \(\exists \) a least one \(x_0 \in (a,b) \) s.t. \(f'(x_0) = 0 \)

Pf: By Thm 18.1, \(\exists x_0, y_0 \in [a,b] \) s.t. \(f(x_0) \leq f(x) \leq f(y_0) \) for all \(x \in [a,b] \). If \(x_0, y_0 \) are both endpts of \([a,b]\), then \(f \) is a constant function as \(f(a) = f(b) \). This implies \(f'(x) = 0 \) for all \(x \in (a,b) \). Otherwise, at least one of \(x_0, y_0 \)
\[f'(x) \to \text{ for all } x \in (a, b). \text{ Otherwise, at least one of } x_0, y_0 \text{ is not an endpoint. } \Rightarrow f \text{ assumes either a maximum or a minimum at an interior point } x \in (a, b). \text{ By Thm 29.1, } f'(x) = 0. \]

Thm 29.3. (Mean Value Thm)

Let \(f \) be a continuous function on \([a, b]\) that is differentiable on \((a, b)\). Then \(\exists \ x \in (a, b) \) s.t. \(f'(x) = \frac{f(b) - f(a)}{b - a} \).

Pf: Let \(L \) be the function whose graph is the straight line connecting \((a, f(a))\) and \((b, f(b))\) (see the picture), i.e. \(y = L(x) = \frac{f(b) - f(a)}{b - a} (x - a) + f(a) \).

In particular, \(L(a) = f(a) \), \(L(b) = f(b) \), \(L'(x) = \frac{f(b) - f(a)}{b - a} \).

Set \(g(x) = f(x) - L(x) \). Then \(g \) is continuous on \([a, b]\) and is differentiable on \((a, b)\).

Moreover, \(g(a) = f(a) - L(a) = 0 \), \(g(b) = f(b) - L(b) = 0 \).

By Rolle's Theorem, \(\exists \ x_0 \in (a, b), \) s.t. \(g'(x_0) = 0 \).

But \(g'(x_0) = f'(x_0) - L'(x_0) \)

\[\Rightarrow f'(x_0) = \frac{f(b) - f(a)}{b - a}. \]
But \(g'(x_0) = f'(x_0) - L'(x_0) \)

\[f'(x_0) = \frac{f(b) - f(a)}{b - a} \]

Corollary 29.4. Let \(f \) be a differentiable function on \((a, b)\) s.t \(f'(x) = 0 \) for \(\forall x \in (a, b) \). Then \(f \) is a constant function on \((a, b)\).

pf. If \(f \) is not constant on \((a, b)\), then \(\exists x_1, x_2 \) s.t \(a < x_1 < x_2 < b \) and \(f(x_1) \neq f(x_2) \).

By the Mean Value Thm, \(\exists x_0 \in (x_1, x_2) \) s.t

\[f'(x_0) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} \neq 0. \]

This is a contradiction.

Corollary 29.5. Let \(f, g \) be differentiable on \((a, b)\) s.t \(f' = g' \) on \((a, b)\). Then \(\exists a \) constant \(c \) s.t

\[f(x) = g(x) + c \]
\[f' = g' \text{ on } (a, b). \text{ Then } \exists \text{ a constant } c \text{ s.t.} \]
\[f(x) = g(x) + c \text{ for all } x \in (a, b) \]

\textbf{Pf.: Exercise. Hint: Apply Corollary 29.4 to } f-g. \]

\textbf{Remark: Recall the following fact from Calculus:}

If \(F_1, F_2 \) are both anti-derivative of \(f \) on \((a,b) \),
then \(F_1 = F_2 + C \).
prove the above fact.

\textbf{Defn 29.6}

Let \(f \) be a function on an interval \(I \). We say

1. \(f \) is strictly increasing on \(I \) if
 \[x_1, x_2 \in I \text{ and } x_1 < x_2 \Rightarrow f(x_1) < f(x_2) \]
2. \(f \) is strictly decreasing on \(I \) if
 \[x_1, x_2 \in I \text{ and } x_1 < x_2 \Rightarrow f(x_1) > f(x_2) \]
3. \(f \) is increasing on \(I \) if
 \[x_1, x_2 \in I \text{ and } x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2) \]
4. \(f \) is decreasing on \(I \) if
 \[x_1, x_2 \in I \text{ and } x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2) \]
Corollary 29.7

Let f be a differentiable function on (a, b). Then

(i) If $f'(x) > 0$ on $(a, b) \Rightarrow f$ is strictly \uparrow

(ii) If $f'(x) < 0$ on $(a, b) \Rightarrow f$ is strictly \downarrow

(iii) If $f'(x) \geq 0$ on $(a, b) \Rightarrow f$ is \uparrow

(iv) If $f'(x) \leq 0$ on $(a, b) \Rightarrow f$ is \downarrow

Proof: (i) Consider $x_1, x_2 \in (a, b)$ with $x_1 < x_2$.

By M.V.T., $\exists \xi \in (x_1, x_2)$ s.t

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} = f'(\xi) > 0$$

$\Rightarrow f(x_2) > f(x_1) \Rightarrow f$ is strictly \uparrow.

(ii), (iii), (iv): Exercise.

Q: Let f be differentiable on (a, b)

True or False

f strictly \uparrow on $(a, b) \Rightarrow f'(x) > 0$ for all $x \in (a, b)$.

A: False.

Thm 29.8 (Intermediate Value Thm for Derivatives)

Let f be a differentiable function on (a, b). If $a < x_1 < x_2 < b$,
Let \(f \) be a differentiable function on \((a, b)\). If \(a < x_1 < x_2 < b\), \(c \) lies between \(f'(x_1) \) and \(f'(x_2) \), then \(\exists \ x \in (x_1, x_2) \) s.t. \(f'(c) = 0 \).

Pf: We may assume \(f'(x) < c < f'(x_2) \). Let \(g(x) = f(x) - cx \) for \(x \in (a, b) \). Then \(g'(x_1) < 0 < g'(x_2) \).

Since \(g \) is continuous on \([x_1, x_2]\), \(\Rightarrow g \) achieves its minimum in \([x_1, x_2]\), i.e., \(\exists \ x_0 \in [x_1, x_2], s.t \ g(x_0) \leq g(x), \forall x \in [x_1, x_2] \).

Claim 1: \(x_0 \neq x_1 \)

Pf of claim 1: Note \(g'(x_1) = \lim_{y \to x_1} \frac{g(y) - g(x_1)}{y - x_1} < 0 \).

\(\Rightarrow \frac{g(y) - g(x_1)}{y - x_1} < 0 \) for \(y \) close to \(x_1 \) and \(y > x_1 \)

\(\Rightarrow g(y) < g(x_1) \) for \(y \) close to \(x_1 \) and \(y > x_1 \)

\(\Rightarrow g(x_1) \) is not the minimum of \(g \) on \([x_1, x_2]\).

Claim 2: \(x_0 \neq x_2 \)

Pf of claim 2: Note \(g'(x_2) = \lim_{y \to x_2} \frac{g(y) - g(x_2)}{y - x_2} > 0 \).

\(\Rightarrow \frac{g(y) - g(x_2)}{y - x_2} > 0 \) for \(y \) close to \(x_2 \) and \(y < x_2 \)

\(\Rightarrow g(y) < g(x_2) \) for \(y \) close to \(x_2 \) and \(y < x_2 \)
- \(g(y) < g(x) \) for \(y \) close to \(x \) when \(y \to 0^+ \)

\[\Rightarrow g(x_2) \text{ cannot be the minimum of } g \text{ on } [x_1, x_2]. \]

Hence \(x_0 \in (x_1, x_2) \). Thus by Thm 29.1, \(g'(x_0) = 0 \)

This implies \(f'(x_0) = 0 \).

Thm 29.9

Let \(f \) be a one-to-one continuous function on an open interval \(I \), and \(J = f(I) \). If \(f \) is differentiable at \(x_0 \in I \) and if \(f(x_0) \neq 0 \), then \(f^{-1} \) is differentiable at \(y_0 = f(x_0) \) and

\[
(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f(f^{-1}(y_0))}
\]

Pf: P237 in the book.

Ex.

Let \(f(x) = \sin x \) on \([-\frac{\pi}{2}, \frac{\pi}{2}]\).

Set \(g(y) = f^{-1}(y) = \sin^{-1}(y) = \arcsin(y) \)

For any \(x_0 \in (-\frac{\pi}{2}, \frac{\pi}{2}) \), let \(y_0 = f(x_0) \in (-1, 1) \)

Note \(f'(x_0) = \cos x_0 \neq 0 \).

By Thm 29.9,

\[
g'(y_0) = \frac{1}{f'(f^{-1}(y_0))} = \frac{1}{\cos(\arcsin(y_0))}
\]
By the following graph

\[\frac{1}{\sqrt{1-y^2}} \]

Let \(x_0 = \arcsin y_0 \)

\[\Rightarrow \cos(\arcsin y_0) = \cos x_0 = \sqrt{1-y_0^2} \]

\[\Rightarrow g'(y_0) = \sqrt{1-y_0^2}, \quad y_0 \in (-1, 1) \]

3 L'Hospital's Rule

Thm 30.2 (L'Hospital's Rule)

Let \(s \) signify \(a, a^+, a^-, \infty \) or \(-\infty \) where \(a \in \mathbb{R} \), and

Let \(f, g \) be differentiable functions. Assume

\[\lim_{x \to s} \frac{f'(x)}{g'(x)} = L \]

If \(\lim_{x \to s} f(x) = \lim_{x \to s} g(x) = 0 \).

or

\[\lim_{x \to s} |g(x)| = +\infty \]

then

\[\lim_{x \to s} \frac{f(x)}{g(x)} = L. \]