33 properties of the Riemann Integral

Thm 33.1 Every monotonic function \(f \) on \([a, b]\) is integrable.

\[f(a) < f(b), \quad \text{if } f(a) = f(b), \text{ then } f \text{ is constant on } [a, b], \text{ which is clearly integrable. Now assume } f(a) < f(b). \]

Note \(f \) is bdd as \(f(a) \leq f(x) \leq f(b) \) for \(x \in [a, b] \).

Take any partition \(P = \{a = t_0 < t_1 < \cdots < t_n = b\} \) with mesh less than \(\frac{\varepsilon}{f(b) - f(a)} \). Then

\[
U(f, P) - L(f, P) = \sum_{k=1}^{n} \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) (t_k - t_{k-1})
\]

\[= \sum_{k=1}^{n} [f(t_k) - f(t_{k-1})] (t_k - t_{k-1}) \]

Since \(\text{mesh}(P) < \frac{\varepsilon}{f(b) - f(a)} \), we have \(t_k - t_{k-1} < \frac{\varepsilon}{f(b) - f(a)} \), \(\forall 1 \leq k \leq n. \)

\[\Rightarrow \quad U(f, P) - L(f, P) < \sum_{k=1}^{n} [f(t_k) - f(t_{k-1})] \frac{\varepsilon}{f(b) - f(a)} \]

\[= [f(b) - f(a)] \frac{\varepsilon}{f(b) - f(a)} = \varepsilon. \]

Case II. Suppose \(f \) is decreasing on \([a, b]\). Ex.

Thm 33.2 Every continuous function \(f \) on \([a, b]\) is integrable.

\[\text{Pf: Let } \varepsilon > 0. \quad \text{Recall } f \text{ continuous on } [a, b] \Rightarrow f \text{ is} \]
Pf. Let $\varepsilon > 0$. Recall f is continuous on $[a, b] \Rightarrow f$ is uniformly continuous on $[a, b]$, $\Rightarrow \exists \delta > 0$ s.t.

\[\forall x, y \in [a, b] \text{ and } |x - y| < \delta \Rightarrow |f(x) - f(y)| < \frac{\varepsilon}{b - a} \quad (1) \]

Consider any partition $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ where

\[\max \{t_k - t_{k-1} : k = 1, 2, \ldots, n\} < \delta. \]

Since f attains its max and min on each $[t_{k-1}, t_k]$,

it follows from (1) that

\[M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) < \frac{\varepsilon}{b - a} \]

for every k. \Rightarrow

\[U(f, P) - L(f, P) = \sum_{k=1}^{n} (M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]))(t_k - t_{k-1}) \]

\[< \sum_{k=1}^{n} \frac{\varepsilon}{b - a} (t_k - t_{k-1}) = \varepsilon. \]

By Thm 32.5, f is integrable.

Thm 33.3 Let f, g be integrable functions on $[a, b]$, and let c be a real number. Then

(i) cf is integrable and $\int_{a}^{b} cf = c \int_{a}^{b} f$

(ii) $f + g$ is integrable and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$.

Pf. Read P.282 - 283.

Thm 33.4 (i) If f and g are integrable on $[a, b]$ and if

\[f(x) \leq g(x) \text{ for } x \in [a, b], \text{ then } \int_{a}^{b} f \leq \int_{a}^{b} g. \]

(ii) If g is a continuous nonnegative function
If \(g \) is a continuous nonnegative function on \([a, b]\) and if \(\int_a^b g = 0 \), then \(g \) is identically 0 on \([a, b]\).

\[\text{Pf (i):} \quad \text{Let } h = g - f. \text{ By Thm 33.3, } h \text{ is integrable on } [a, b]. \]

Since \(h(x) \geq 0 \) on \([a, b]\), then it is clear that \(L(h, P) \geq 0 \) for all partition \(P \) of \([a, b]\), so
\[\int_a^b h = L(h) \geq 0. \]

Apply Thm 33.3 again,
\[\int_a^b h = \int_a^b g + \int_a^b (-f) = \int_a^b g - \int_a^b f \geq 0, \]
\[\Rightarrow \int_a^b g \geq \int_a^b f. \]

(ii). Suppose \(g \) is not identically 0. Then \(\exists \ x_0 \in [a, b] \), such that \(f(x_0) > 0 \). By the continuity of \(f \), \(\exists \) an interval \([c, d] \subseteq [a, b] \) containing \(x_0 \), such that \(g(x) > \frac{f(x_0)}{2} \) on \([c, d] \). Then
\[\int_c^d g \geq \int_c^d g \geq \frac{f(x_0)}{2} (d - c) > 0. \]

This contradicts with \(\int_a^b g = 0. \)

Remark: Let \(f, g \) be continuous on \([a, b]\), and \(f(x) \leq g(x) \) on \([a, b]\). Assume \(g - f \) is not identically zero. Then
\[\int_a^b f < \int_a^b g. \]
Thm 33.5

If f is integrable on $[a,b]$, then $|f|$ is integrable on $[a,b]$ and $\int_a^b |f| \leq \int_a^b |f|.$

Proof. Step 1: prove $|f|$ is integrable

Claim: For any subset S of $[a,b]$, we have

$$M(|f|, S) - m(|f|, S) \leq M(f, S) - m(f, S). \quad (2)$$

Proof. Ex.

Let $P = \{a = t_0 < t_1 < \ldots < t_n = b\}$ be any partition of $[a,b]$.

By (2) \Rightarrow

$$M(|f|, [t_{k-1}, t_k]) - m(|f|, [t_{k-1}, t_k])$$

$$\leq M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k])$$

$$\Rightarrow \sum_{k=1}^{n} \left(M(|f|, [t_{k-1}, t_k]) - m(|f|, [t_{k-1}, t_k]) \right) (t_k - t_{k-1})$$

$$= \sum_{k=1}^{n} \left(M(f, [t_{k-1}, t_k]) - m(f, [t_{k-1}, t_k]) \right) (t_k - t_{k-1})$$

$$\Rightarrow U(|f|, P) - L(|f|, P) \leq U(f, P) - L(f, P).$$

For all $\varepsilon > 0$, there exists a partition P such that

$$U(f, P) - L(f, P) < \varepsilon$$

$$\Rightarrow U(|f|, P) - L(|f|, P) < \varepsilon.$$

Thm 33.6

Let f be a function defined on $[a,b]$. If $a < c < b$

and f is integrable on $[a,c]$ and on $[c,b]$, then f is
Let f be a function defined on $[a,b]$. If $a < c < b$

and f is integrable on $[a,c]$ and on $[c,b]$, then f is

integrable on $[a,b]$ and

$$\int_a^b f = \int_a^c f + \int_c^b f.$$

Pf: Read P285.

Defn 33.7

A function f on $[a,b]$ is piecewise monotonic if there is

a partition $P = \{a = t_0 < t_1 < \cdots < t_n = b\}$ of $[a,b]$ s.t

f is monotonic on each interval (t_{k-1}, t_k). The function f is

piecewise continuous if \exists a partition P of $[a,b]$ s.t

f is uniformly continuous on each (t_{k-1}, t_k).

Thm 33.8

If f is a piecewise continuous function or a bad piecewise

monotonic function on $[a,b]$, then f is integrable on $[a,b]$.

Pf: Read P286.

Thm 33.9

If f is continuous on $[a,b]$, then \exists some $x \in (a,b)$ s.t

$$f(x) = \frac{1}{b-a} \int_a^b f.$$
Pf: Let M and m be the max and min of f on $[a, b]$.

By Thm 18.1, $\exists x_0, y_0 \in [a, b]$ s.t $f(x_0) = m$ and $f(y_0) = M$

If $M = m$, then f is a constant function and

$$f(x) = \frac{1}{b-a} \int_a^b f \text{ for all } x \in (a, b).$$

Now assume $M > m$. Note each function $M - f$ and $f - m$

is nonnegative and not identically 0. By Thm 33.4 (i),

$$\int_a^b m < \int_a^b f < \int_a^b M.$$

Thus

$$m < \frac{1}{b-a} \int_a^b f < M.$$

Then by I.V.T. $\exists x \in (a, b)$ between x_0 and y_0 s.t

$$f(x) = \frac{1}{b-a} \int_a^b f.$$