Announcements

- TA Evaluations!
- Separate from Course/Professor evaluation (CAPE)
- Due Monday June 7th at 11:59pm PDT
- Homework 9 due this Sunday June 7 at 11:59pm PDT
- MATLAB Quiz tomorrow!
- On Canvas under Quizzes
- Review of MATLAB Homeworks 1-4
- Open notes, book, and assignment pages
- Not designed to be difficult, just to make sure you understood the concepts in each homework
- Finals week:
- Will host a Final review session Tuesday at 6pm PDT
- And one more flex office hour before the final

Example Problems

Find the general solution for the system: $\begin{aligned} & x_{1}{ }^{\prime}=x_{1}+2 x_{2} \\ & x_{2}{ }^{\prime}=4 x_{1}+3 x_{2}\end{aligned}$
$\mathbf{x}^{\prime}=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right] \mathbf{x}$
$\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=e^{r t}\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]$
$\left[\begin{array}{cc}1-r & 2 \\ 4 & 3-r\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
$(1-r)(3-r)-8=0$
$r^{2}-4 r-5=0$
$(r-5)(r+1)=0$
$r=5,-1$
$\left[\begin{array}{cc}-4 & 2 \\ 4 & -2\end{array}\right]\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

$$
\begin{aligned}
& 2 u_{1}=u_{2}=c_{1} \\
& u_{2}=c_{1} \\
& {\left[\begin{array}{c}
c_{1} / 2 \\
c_{1}
\end{array}\right] \rightarrow c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]}
\end{aligned}
$$

$$
\left[\begin{array}{ll}
2 & 2 \\
4 & 4
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

$$
\begin{aligned}
& u_{1}+u_{2}=0 \\
& u_{2}=c_{2} \\
& u_{1}=-c_{2}
\end{aligned}
$$

$$
\left[\begin{array}{c}
-c_{2} \\
c_{2}
\end{array}\right]=c_{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=c_{1} e^{5 t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]
$$

$$
x_{1}(t)=c_{1} e^{5 t}-c_{2} e^{-t}
$$

$$
x_{2}(t)=2 c_{1} e^{5 t}+c_{2} e^{-t}
$$

$$
\mathbf{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
e^{5 t} & -e^{-t} \\
2 e^{5 t} & e^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

Systems of Linear Differential Equations with Constant Coefficients

- Sometimes we might end up with a system of first-order differential equations that we want to solve (many reasons why this might be the case in physics, chemistry, biology, etc) and want to figure out how to solve it
- Such a system would look like this (for two variables, but there could be more):

$$
\begin{aligned}
& x_{1}{ }^{\prime}(t)=a x_{1}(t)+b x_{2}(t)+g_{1}(t) \\
& x_{2}^{\prime}(t)=c x_{1}(t)+d x_{2}(t)+g_{2}(t)
\end{aligned}
$$

- We can use matrix notation to write this system like this:

$$
\begin{gathered}
\mathbf{x}(t)=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right], A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right], \mathbf{g}(t)=\left[\begin{array}{l}
g_{1} \\
g_{2}
\end{array}\right] \\
\frac{d}{d t} \mathbf{x}(t)=A \mathbf{x}(t)+\mathbf{g}(t)
\end{gathered}
$$

- Alternatively we can take the derivative of the first equation and use substitution to get:

$$
\begin{gather*}
x_{1}^{\prime \prime}(t)=a x_{1}^{\prime}(t)+b\left[c x_{1}(t)+d x_{2}(t)+g_{2}(t)\right]+g_{1}^{\prime}(t) \tag{1}\\
x_{1}^{\prime \prime}-a x_{1}^{\prime}-b c x_{1}=b d x_{2}+b g_{2}+g_{1}^{\prime} \tag{2}
\end{gather*}
$$

- Side note: we could go the opposite direction for a higher-order differential equation $a_{n} x^{(n)}(t)+a_{n-1} x^{(n-1)}(t) \ldots+a_{1} x^{\prime}(t)+a_{0} x(t)+g(t)=0$ by choosing $x_{1}=x^{(n-1)}=x_{2}{ }^{\prime}, x_{2}=x^{(n-2)}=x_{3}{ }^{\prime}, \ldots, x_{n-1}=x^{\prime}=x_{n}{ }^{\prime}, x_{n}=x$ and rearranging the original equation to get $a_{n} x_{1}^{\prime}=-\left[a_{n-1} x_{1}+a_{n-2} x_{2}+\ldots+a_{1} x_{n-1}+a_{0} x_{n}+g(t)\right]$. We therefore get a system of n linear first-order differential equations with n unknown functions.
- What we can see is that we are actually solving a second-order nonhomogeneous differential equation for both x_{1} and x_{2}
- We should therefore expect to find solutions in similar ways
- The first method of solution we could use is Laplace transforms
- Take the Laplace Transform of each equation, we can then solve for each individual function
- However, we can also use methods from linear algebra to solve our system!
- Chapters 9.2 and 9.3 have a good overview of these techniques
- We will first attempt to solve the homogeneous equation $\mathbf{x}^{\prime}=A \mathbf{x}$
- We will assume solutions of the form $\mathbf{x}=e^{r t} \mathbf{u}$, just like we did for constant-coefficient homogeneous second-order differential equations
- Taking the derivative, we get $\mathbf{x}^{\prime}=r e^{r t} \mathbf{u}$, and therefore $r e^{r t} \mathbf{u}=A e^{r t} \mathbf{u}$
- Dividing by $e^{r t}$, we get $A \mathbf{u}=r \mathbf{u}$, which is called an eigenvalue equation for A
* Values for r are called eigenvectors
* Vectors \mathbf{u} which solve the equation for a given eigenvector are called eigenvectors
* From linear algebra, we find all eigenvalues by setting the determinant of the matrix $A-r \mathbf{I}$ (\mathbf{I} represents the identity matrix) equal to zero, which is a polynomial called the characteristic equation, and their corresponding eigenvectors from $(A-r \mathbf{I}) \mathbf{u}=\mathbf{0}$ ($\mathbf{0}$ is the zero vector)
* For any eigenvalue, there will be infinite eigenvectors that solve the equation
- Typically, we can represent all these eigenvectors by $c \mathbf{v}$, where c is an arbitrary constant and v is one particular eigenvector
- However, if we have a repeated eigenvalue in the characteristic equation, we will have eigenvectors of the form $c_{1} \mathbf{v}_{1}+c_{2} \mathbf{v}_{2}+\ldots$, where all the vectors are linearly independent
- If the eigenvalue is complex, we will have a complex eigenvector of the form $\mathbf{v}=\mathbf{a}+\mathbf{b} i$, where a and b are vectors with real coefficients
* Here is the general method we use to solve for the eigenvectors and eigenvalues in a system of two variables:

$$
\begin{aligned}
& (A-r \mathbf{I}) \mathbf{u}=0 \\
& {\left[\begin{array}{cc}
a-r & b \\
c & d-r
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& (a-r)(d-r)-b c=0
\end{aligned}
$$

$$
\begin{aligned}
& r=r_{1}, r_{2} \\
& \left(a-r_{1}\right) u_{1}+b u_{2}=0 \\
& c u_{1}+\left(d-r_{1}\right) u_{2}=0 \\
& u_{2}=c_{1} \\
& \rightarrow \mathbf{u}_{r_{1}}=c_{1}\left[\begin{array}{c}
m \\
n
\end{array}\right] \\
& \left(a-r_{2}\right) u_{1}+b u_{2}=0 \\
& c u_{1}+\left(d-r_{2}\right) u_{2}=0 \\
& u_{2}=c_{2} \\
& \rightarrow \mathbf{u}_{r_{2}}=c_{2}\left[\begin{array}{l}
p \\
q
\end{array}\right]
\end{aligned}
$$

- Distinct real eigenvalues: solution is $\mathbf{x}=c_{1} \mathbf{u}_{1} e^{r_{1} t}+c_{2} \mathbf{u}_{2} e^{r_{2} t}$
- Repeated eigenvalue: solution is $\mathbf{x}=c_{1} \mathbf{u} e^{r t}+c_{2} e^{r t}[t \mathbf{u}+\mathbf{v}]$ where $(A-r \mathbf{I}) \mathbf{v}=\mathbf{u}$
* We can derive the second solution through the assumption that it will be of the form $\mathbf{a} t e^{r t}+\mathbf{b} e^{r t}$ and substituting into the original equation and we find that $\mathbf{a}=\mathbf{u}$, and $\mathbf{b}=\mathbf{v}$, where \mathbf{v} satisfies $(A-r \mathbf{I}) \mathbf{v}=\mathbf{u}$
- Imaginary eigenvalues: solution is $\mathbf{x}=c_{1} e^{\alpha t}[\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t]+c_{2} e^{\alpha t}[\mathbf{a} \sin \beta t+\mathbf{b} \cos \beta t]$, where the eigenvalues are $\alpha \pm \beta i$
- Now if we want to solve the nonhomogeneous system $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{g}$, we can either use undetermined coefficients of variation of parameters!
- Solutions will be of the form $\mathbf{x}=\mathbf{X}\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]+\mathbf{x}_{p}$, where \mathbf{X} is a 2×2 matrix that contains the two linearly independent solutions for the corresponding homogeneous problem, and \mathbf{x}_{p} is a vector (or a sum of vectors) that is a particular solution to the system
- Undetermined coefficients: we will follow very similar rules for test functions as we did previously with this method, then solve for the values of each vector
- There are some slight differences, however, which I can explain in office hours if you are curious. They shouldn't come up in the problems for this class
- Variation of parameters: the textbook shows a nice derivation of this formula, which is pretty similar to the previous derivation for our second order equations, and the result is that $\mathbf{x}_{p}=\mathbf{X} \int \mathbf{X}^{-1} \mathbf{g} d t$, where \mathbf{X}^{-1} is the inverse of $\mathbf{X}\left(\mathbf{X}^{-1} \mathbf{X}=\mathbf{X} \mathbf{X}^{\mathbf{1}}=\mathbf{I}\right)$
- For a 2×2 matrix, we can calculate \mathbf{X}^{-1} directly: $\mathbf{X}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, for

$$
\mathbf{X}=\left[\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right]
$$

