MATH 20D - Dr. Xiao

Section D05/D06

Ariel (Ari) Schreiman

4/6/21

Announcements

- Introduction
- Check out the Discord (link on the Canvas announcement or on the course website)
- Make sure you have access to the textbook and gradescope
- There is a MATLAB gradescope and a separate course gradescope
- Homework 1 due this Friday (April 9) at 11:59pm PDT
- MATLAB Assignment 1 due next week (April 16)
- Download MATLAB version 2021a soon!
- Discussion section format:
- Come to either time (1pm or 2 pm PDT) that is more convenient for you
- Not mandatory to attend
- I will not be recording these sessions
- However, these notes will be edited and posted after the discussion sections
* Expect these to be released Tuesday evenings
* Will be accessible on Canvas under Files and on the course website under Lecture Notes
- Office Hours:
- Thursday 1 pm every week
- Flexible hour
* See \#office-hour-times on the Discord for more info

Example Problems

1. Find all solutions to the equation $y^{\prime}=y$

We can see that this is a separable differential equation.
First let's check if $y^{\prime}=0$ results in a solution:
Substituting, we get $y=0$. This function does indeed have a derivative of 0 and therefore solves this equation.
Now, let's restrict ourselves to functions where $y \neq 0$. In this case we can divide both sides of the equation by y and get:
$\frac{1}{y} * \frac{d y}{d x}=1$. Since y is a function of x, the expression $\frac{d}{d x}(F(y))=f(y) * \frac{d y}{d x}$ by the chain rule, with $F(y)=\int f(y) d y$.
Therefore, if we take the integral of both sides of $\frac{1}{y} \frac{d y}{d x}=1$ in terms of x, we get:
$\int \frac{1}{y} d y=\int 1 * d x \rightarrow \ln |y|=x+c \rightarrow e^{\ln |y|}=e^{x+c} \rightarrow|y|=e^{c} * e^{x} \rightarrow y=\left(\pm e^{c}\right) e^{x}$

Notice how we carry the constant c throughout our simplification of our implicit solution when finding the explicit solution for this problem. Also, for any given initial value of y , we will have exactly one constant value for $\pm e^{c}$, so we can define $C= \pm e^{c}$ and rewrite our solution as $y=C e^{x}$ for simplicity. Since for all $C \neq 0$ this equation results in a function where $y \neq 0$ for all x , we can confirm that this equation fits our initial restriction.
2. Find all solutions for $x \frac{d y}{d x}+2 y=3$

We can see that this is a linear first-order ODE, so first we want to put this equation into the standard form: $\frac{d y}{d x}+\left(\frac{2}{x}\right) y=\frac{3}{x}$. We therefore must assume that $x \neq 0$.
Now let's find our integrating factor $\mu(x)=e^{\int_{\frac{2}{x} d x}^{2}}=e^{2 \ln |x|}=e^{\ln |x|^{2}}=|x|^{2}=x^{2}$.
Therefore, $y=\frac{\int x^{2}\left(\frac{3}{x}\right) d x+c}{x^{2}}=\frac{3}{2}+\frac{c}{x^{2}}$.
As we can see, this solution is valid for all values of $x \neq 0$.

Typically for a problem like this we will pick some inital value where $x>0$, and can restrict the domain of y to positive values of x , since y is continuous and differentiable on the entire domain.
3. Find all solutions to $\left(y e^{x y}+2\right)+\left(x e^{x y}\right) \frac{d y}{d x}=0$

This is a nonlinear equation and it is not separable either, but it might be an exact equation. We have to check if we can find a function $F(x, y)$ such that $y e^{x y}+2$ is the partial derivative in terms of x and $x e^{x y}$ is the partial derivative in terms of y .
We can take integrals of both functions in terms of x and y , respectively, and see if there is a function $F(x, y)$ that satisfies both integrals.
$\int\left(y e^{x y}+2\right) d x=e^{x y}+2 x+a(y)$
$\int x e^{x y} d y=e^{x y}+b(x)$
Notice that instead of just adding a constant of integration c, we must add an arbitrary function a(y) or function $\mathrm{b}(\mathrm{x})$ because $\frac{\partial}{\partial x} a(y)=0$ and $\frac{\partial}{\partial y} b(y)=0$.
Here, we can choose $a(y)=c$ and $b(x)=2 x+c$ and therefore get the implicit solution:
$F(x, y)=e^{x y}+2 x+c=0$
If we wanted to find a solution for an initial value problem, we would just substitute the x and y values into the above equation and solve for c .

Calculus Review

- Implicit Differentiation
- We have an expression in terms of x and y where y is a function of x
- Therefore we must use the chain rule and/or product rule when finding the derivative in terms of x
- For example, let's implicily differentiate $e^{x y}+y=2$:
* $\frac{d}{d x}\left(e^{x y}+y\right)=\frac{d}{d x}(2)$
* $\left[y+y^{\prime} x\right] * e^{x y}+y^{\prime}=0$
- Partial Derivatives
- We have an expression in terms of multiple variables, but we are taking the derivative of only one variable at a time. We treat all other variables like constants.
- For example, let's find the partial derivatives of $e^{x y}+y$
* $\frac{\partial}{\partial x}\left(e^{x y}+y\right)=y e^{x y}, \frac{\partial}{\partial y}\left(e^{x y}+y\right)=x e^{x y}+1$
* Notice that these partial derivatives are not the same as the implicit differentiation above!
- Integration Techniques
- u-Substitution
* When integrating an expression of the form $\int f^{\prime}(x) * g(f(x)) d x$, we can define $u=f(x)$. Therefore, $d u=f^{\prime}(x) d x$, and we can substitute to get $\int f^{\prime}(x) * g(f(x)) d x=\int g(u) d u$ to solve.
* For a definite integral, you must remember to convert the bounds of integration from [x_{0}, x_{1}] to $\left[u_{0}=f\left(x_{0}\right), u_{1}=f\left(x_{1}\right)\right]$
* Example: $\int_{x=1}^{x=2} e^{x+5} d x \rightarrow u(x)=x+5 \rightarrow d u=d x \rightarrow \int_{u=6}^{u=7} e^{u} d u=e^{7}-e^{6}$
- Integration by Parts
* When integrating an expression of the form $\int a(x) * b(x) d x$, we can take advantage of the product rule for differentiation to find a simpler integral to evaluate:
- $\frac{d}{d x}[u(x) * v(x)]=u^{\prime} v+u v^{\prime}$
- Rearranging and integrating gives us: $\int u v^{\prime} d x=u v-\int u^{\prime} v d x$
- So if we can make suitable choices for $u(x)$ and $v^{\prime}(x)$ such that the derivative of u is a function that is simpler to integrate and/or the function v is simpler to integrate (or at least not more complicated), then the integral on the right side of this equation should be easier to solve.
- Sometimes you will need to check multiple possibilities for u and v
* Example:
$\int x e^{x} d x \rightarrow u=x, v^{\prime}=e^{x} \rightarrow u^{\prime}=1, v=e^{x}$
- So $\int x e^{x} d x=x e^{x}-\int e^{x} d x=x e^{x}-e^{x}+c$

Differential Equations Terminology

- What is a differential equation?
- Equation that relates derivatives of a function or functions
* Usually found when discussing physical processes: for example, air resistance is a change in acceleration that is a function of the velocity of an object
- Ordinary differential equations only involve functions of one variable - usually $y(x)$
- Partial differential equations can relate functions of multiple variables
* We will not be covering these equations in this class
- Typically, we want to find a solution to a differential equation
* A function that, when substituted into the original equation, makes that equation true - it can be simplified to $0=0$
- For ordinary differential equations, we can represent them with either:
* Leibniz notation: $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots$
* Prime notation: $y^{\prime}, y^{\prime \prime}, \ldots$
- The order of an ODE is the value of the highest derivative in the equation
* A first order equation only has $\frac{d y}{d x}$, while a second order equation includes a $\frac{d^{2} y}{d x^{2}}$ term, etc
- Linear/Non-linear ODE
- A differential equation of the form $a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)} \ldots a_{1} y^{\prime}+a_{0}(x) y=g(x)$ is called linear and we have special techniques to help solve these equations
- Anything else is nonlinear, these are typically more difficult to solve
- Implicit/Explicit Solution
- A solution to an ODE of the form $f(x)=y$ is called an explicit solution
- A solution to an ODE of the form $F(x, y)=0$ is called an implicit solution
* Sometimes we can't solve for y
- Initial Value Problems
- Differential equations can have infinitely many solutions
- Once we define initial conditions, that narrows down the number of possible solutions
- For the functions in this class, typically this can be reduced to only one unique solution
* See theorem 1 in the textbook for a special case

Separable Differential Equations

- Formula
$-y^{\prime}=\frac{a(x)}{b(y)}$
- Method of Solution
- First check if $y^{\prime}=0$, solve for y and see if this equation is a solution
* For example $y^{\prime}=y^{2}-4$ has the solutions $y=2, y=-2$
- Then we can rearrange the equation to: $b(y) d y=a(x) d x$ and integrate

Linear First-Order Equations

- Formula
$-a_{1}(x) y^{\prime}+a_{2}(x) y=g(x)$
- First rearrange by dividing by $a_{1}(x)$ on both sides, making sure it is not zero
* This becomes the standard form $y^{\prime}+P(x) y=Q(x)$
- Method of Solution
- We want to find a function $\mu(x)$ such that

$$
[\mu * y]^{\prime}=\mu * y^{\prime}+y * \mu^{\prime}=\mu * y^{\prime}+y * \mu * P(x)=\mu\left[y^{\prime}+P(x) y\right]
$$

- Therefore, if we multiply both sides of the equation by $\mu(x)$, we can easily integrate both sides in terms of x and then divide by $\mu(x)$ to find an explicit solution
* This means $\mu(x) \neq 0$ must be true
- The choice $\mu(x)=e^{\int P(x) d x}$ satisfies both of these conditions
- So $y=\frac{\int \mu(x) Q(x) d x+C}{\mu(x)}$

Exact Equations

- Formula
$-M(x, y)+N(x, y) \frac{d y}{d x}=0$
- Method of Solution
- If we have a nonlinear ODE with $M(x, y)=\frac{\partial}{\partial x} F(x, y)$ and $N(x, y)=\frac{\partial}{\partial y} F(x, y)$, then the derivative in terms of x of some equation $F(x, y)=c$ provides us with the formula above.
- So we can check $\int M(x, y) d x=\int N(x, y) d y=F(x, y)$
- Then solve for y, if possible, to get an explicit solution

