MATH 20D - Dr. Xiao
Section D05/D06
Ariel (Ari) Schreiman
4/13/21

Announcements
* Midterm on Friday, see the exam instructions:
http://www.math.ucsd.edu/~m3xiao/math20d/Instruction-Exam.pdf
— 11am or 6pm PDT, 65 minutes
— Open-notes but not open-internet
* Review session tomorrow at 6pm PDT
— Zoom link: https://ucsd.zoom.us/j/96758094578 (also on canvas announcement)
— Make sure to look at the practice problems and Prof. Xiao's review lecture
 MATLAB Homework due Friday at 1pm PDT
* Homework 2 due Sunday at 11:59pm PDT

Example Problems
1. Solve(x2 +y2 = 5) + (y + xy)y" = 0 with initial condition 1/(0) = 1

We start by checking to see if this is already an exact equation:

3
f(x2+y2—5)dx= %+xy2—5x+g(y)
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Since it is not, we need to use an integrating factor.
M, =2y, Ny =y

We can start by checking if u = f(y) — NeoMy _ _y-2y _ 7 which doesn't work
- M x24+y2-5 x24+y2-5 '
My=Ne 2y-y_ _y

N oy +ay y(x+1):x+1
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But if we test u = f(x) — then this results in the separable

. . . d}l 1 —dx 1 1 . o "
differential equation — = —1y so u(x) =e ¥+l =e nlx+1l = |x 4+ 1]. Since our initial condition
X X+

implies that x € [0, ), then x +1 > 0, so we can simplify to p(x) = x + 1.

Now all we have to do is multiply by u(x) and solve our exact equation:

(x2+y2—5)(x+1)+(y+xy)(x+1)y’ =0 (1)
[x3+x2-5x=5+y2(x+ )| + [y (x+1)2 ]y’ = 0 (2)

4.3 2 2.2
f(x3+x2—5x—5+y2(x+1))dx:xz+%—5%—5x+w+g(y) 3)


http://www.math.ucsd.edu/~m3xiao/math20d/Instruction-Exam.pdf
https://ucsd.zoom.us/j/96758094578

fy(x+1)2dy= —
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gW) =c; h(x) = —+——7—5x+c

3% — 4x3 4+ 30x2 + 60x — 12¢
6(x +1)?
)= +\/—3x4 — 453 + 30%2 + 60x — 12¢
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And we can plug in our initial condition to solve for c:

1=+ /ﬂ: + —2c—>c:—1
6 2

_ o —3x* —4x3 +30x2 + 60x + 6
So our final solution is: iy =
6 (x+ 1)2

2. A. Find the equation of motion for an ideal spring with spring constant k and a mass m attached to the

end, with initial position xy and zero initial velocity.
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For an ideal spring, F = —kx. Remembering Newton's second law, F = ma = mx”, we get the second-
order homogeneous equation: mx” + kx = 0. If we assume this equation will have solutions of the form

.|k
x = eM, then the characteristic equationis mA2 +k =0and A = +i_|—.
m
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Therefore, the general solution is x(t) = ¢; cos[t —] +cy sin|t_[ —|. Since x(0) = xy and x’(0) = 0,
m m
: o k
we get c; = xg, ¢, = 0. Our equation of motion is x(t) = xo cos|t_[—|.
m

B. Now let's add some dampening. No spring is perfectly ideal so there is some resistance to motion, or
friction, which is a force that is proportional (and opposing) the velocity of the object. So we must include
Ffrictz'on = —bv = —bx’, where b is a constant that represents the amount of internal friction in the spring.

Our equation of motion becomes mx"” 4+ bx" + kx = 0, and so the characteristic equation
b

mA2 + bA + k = 0. The solutions for lambda are: A = —2— +
m

This means there are three possible cases for our damped spring:

2

b

* "Underdamped": — > [2—] . This is the typical situation where the spring has a small value for b
m m

and therefore we still have two imaginary roots. Our general solution is

b
x(t) =e 2m [cq cos|t

2

k

 "Critically damped": — = [2—] . This is a situation where the spring is damped very specifically
m m

so that it is just on the border between vibrational motion and nonvibrational motion. Our general
b

——t
solution is x(t) = (cq + cpt)e 2™ and for our initial conditions the equation of motion is

b ) -1
x(t) = xo|1+ —tle 2m .
2m
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* "Overdamped": — < [2—] . This is typically the case when the spring constant is small or the
m m

mass of the object is large. The damping is so strong that the spring doesn't even vibrate, it just
gradually moves towards the equilibrium position! The general solution is



]t
] and our equation of motion given the intial
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2Vb? — 4km
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If we choose xog =2, k=1, m =1, b,40r = 0.2, beyiticat = 2, bover = 20, then we can compare the
undamped spring and the three damped cases:

Purple: overdamped, Orange: critically damped, Green: underdamped, Blue: undamped

Special Integrating Factors
* Formula:

~ M(x,y) + N(x,y)y' =0
* Method of solution:

— We want to multiply by a function u(x, i) such that this equation becomes exact (1 # Ois a
necessary restriction)



— For this to work, ai[y(x, y) M(x,y)] = ai[p(x, y) N(x, y)] must be true
Y X

* This is because of the equality of mixed partial derivatives — we are finding a function F

such that yM is the x partial and uN is the y partial. So the y derivative of uM must be
0°F

equal to the x derivative of uN, as both are equal to

dx dy
— We can use the product rule to differentiate the above equation, however this gives us a very

tricky partial differential equation to solve
— But there are two special cases:
. . My - Nx . .
* W is only a function of x and N is also solely a function of x

N, - M,

* u is only a function of y and is also solely a function of y

— In these cases, we get a separable differential equation and can integrate, yielding:

fMyI:]Nx "

*ulx)=e
fo];IMydy

" uly)=e
— Then we can multiply our original equation by 1 and solve the new exact equation as we
have already learned

Homogeneous Linear Second-Order ODEs with Constant Coefficients
 Existence of solutions:
— For a linear initial value problem a,(x)y” + a1 (x)y" + ag(x)y = ¢(x); y(xo) = yo, ¥'(x0) = y1,
a solution exists and is unique
— Fundamental set of solutions
* For a second-order equation, we will have exactly two linearly independent solutions.
- This means that the two solutions are not just multiples of each other

© C1Y1 +C2Y2 #0
d
* Because d—[yl + 7] = yl' + yz' (the derivative function is linear), the sum of these
X

two linearly independent solutions (multiplied by any arbitrary constants) is also a
solution to the equation
* For any set of initial conditions, this composite function will be a solution to the
differential equation
* By our theorem above, we conclude that this solution is unique
— General solution
* The composite of two linearly independent solutions 1/; and v, for a second-order linear
ODE: y = c1y1 + caYy; is called the general solution to the equation
+ Homogeneous equations:
— Linear equations where g(x) = 0
— Eventually, we will see how we can solve nonhomogeneous equations in a very similar way to
the homogeneous equations



» We will start with the simplest case — homogeneous, linear, second-order ODEs with constant
coefficients
» Equation:
—ay"+by' +cy=0,a#0
* Method of solution:
— We will start by assuming that this equation will have a solution of the form y = "
_ y’ = me™; y” = m2e™x
— Therefore, our equation becomes am?e™ + bme™* + ce™* = ()
— Since e™* # 0 for all m and x, we can divide both sides by e"*
— This gets us the characteristic equation: am? + bm +c = 0

~b+ Vb? - 4ac

— Use quadratic formula m = > to solve for m
a

* Don't ignore imaginary roots!
— Three cases for our solution:

* Two real roots: general solution is y = c1e™* + cpe*
* One real root: general solution is ¥ = c1e™* + coxe™
- For now, we won't prove how we "guessed" that xe”* is our second solution, but
we will revisit this later on
* Imaginary roots:
- Since a, b, and c are real coefficients, our imaginary solutions will be of the form
m = « + f3i (conjugate pair)
- Therefore, our general solution is
Y= Cle(a+ﬁi)x + Cze(a—ﬁi)x — eax[cleiﬁx + Cze—iﬁx]

- By using Euler's identity e = cos O +isin 0, and choosing appropriate
constants for ¢; and c,, we can determine that y = e** cos fx and y = e sin fx
are both real solutions to the differential equation

- We can rewrite our general solution as y = e**[ky cos fx + k, sin fx]



