Ariel (Ari) Schreiman

4/27/21

Announcements

- Midterm 1 grades are released on gradescope
- Regrade requests are now closed, but if you have any questions feel free to email me
- Second MATLAB assignment due at 1:00pm PDT on Friday
- Fourth homework set due at 11:59pm PDT on Sunday

Example Problems

1. Find the general solution to $y^{\prime \prime}+y=\sec x$

When solving this problem, we notice that $g(x)=\sec x$ is not a function we can annihilate, meaning that we cannot use the method of undetermined coefficients. However, the corresponding homogeneous equation $y_{h}{ }^{\prime \prime}+y_{h}=0$ is easy to solve so we can attempt to use variation of parameters to solve our nonhomogeneous equation.

First solve for $y_{h}: y_{h}{ }^{\prime \prime}+y_{h}=0 \rightarrow y_{h}=c_{1} \sin x+c_{2} \cos x$
Therefore, $y_{p}=u_{1}(x) \sin x+u_{2}(x) \cos x$.

Using the equations for u_{1}, u_{2} that we found in our section on variation of parameters we get:

$$
\begin{aligned}
u_{1} & =-\int \frac{y_{2} g(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} d x=\int \frac{\cos x \sec x}{\sin ^{2} x+\cos ^{2} x} d x=\int \cos x \sec x d x=\int d x=x \\
u_{2} & =\int \frac{y_{1} g(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} d x=\int \frac{\sin x \sec x}{-\sin ^{2} x-\cos ^{2} x} d x=-\int \sin x \sec x d x \\
& =-\int \tan x d x=\ln |\cos x|
\end{aligned}
$$

So $y_{p}=x \sin x+(\ln |\cos x|) \cos x$ and the general solution is:
$y=c_{1} \sin x+c_{2} \cos x+x \sin x+\cos x \ln |\cos x|$
2. Find the general solution to $x^{2} y^{\prime \prime}+x y^{\prime}-y=\ln x$

We first start by finding the general solution to the homogeneous equation $x^{2} y^{\prime \prime}+x y^{\prime}-y=0$. This is a Cauchy-Euler equation with $x_{0}=0$, so our solutions will be of the form $y=x^{r}$. Solving for our characteristic equation we get: $r(r-1)+r-1=0 \rightarrow r^{2}-1=0 \rightarrow r= \pm 1$. So $y_{h}=c_{1} x+c_{2} x^{-1}$.

Next we will use variation of parameters to solve for y_{p}, making use of integration by parts to solve the integrals:
$y_{p}=u_{1} x+u_{2} x^{-1}$
$u_{1}=-\int \frac{x^{-1} \ln x}{x\left(-x^{-2}\right)-x^{-1}} d x=\frac{1}{2} \int \ln x d x \rightarrow u=\ln x, v^{\prime}=1 \rightarrow u^{\prime}=x^{-1}, v=x$
$\rightarrow \frac{1}{2}\left[x \ln x-\int(1) d x\right]=\frac{1}{2}[x \ln x-x]=\frac{x}{2}[\ln x-1]$
$u_{2}=\int \frac{x \ln x}{x\left(-x^{-2}\right)-x^{-1}} d x=-\frac{1}{2} \int x^{2} \ln x d x \rightarrow u=\ln x, v^{\prime}=x^{2} \rightarrow u^{\prime}=x^{-1}, v=\frac{x^{3}}{3}$
$\rightarrow-\frac{1}{2}\left[\frac{x^{3} \ln x}{3}-\int \frac{x^{2}}{3} d x\right]=-\frac{1}{2}\left[\frac{x^{3} \ln x}{3}-\frac{x^{3}}{9}\right]=\frac{x^{3}}{6}\left[\frac{1}{3}-\ln x\right]$
$y_{p}=\frac{x}{2}[\ln x-1] * x+\frac{x^{3}}{6}\left[\frac{1}{3}-\ln x\right] * x^{-1}=\frac{x^{2} \ln x}{3}-\frac{4 x^{2}}{9}=\frac{x^{2}}{3}\left[\ln x-\frac{4}{3}\right]$
Therefore, the general solution is $y=c_{1} x+c_{2} x^{-1}+\frac{x^{2}}{3}\left[\ln x-\frac{4}{3}\right]$
3. Use the definition of the Laplace Transform to find $\mathscr{L}\{1\}, \mathscr{L}\{x\}, \mathscr{L}\left\{x^{n}\right\}$

First let's solve: $\mathscr{L}\{1\}=\int_{0}^{\infty} e^{-s x} d x=\left[-\frac{e^{-s x}}{s}\right]_{0}^{\infty}=0-\left(-\frac{1}{s}\right)=\frac{1}{s}$.
Next we can try $\mathscr{L}\{x\}$ by using integration by parts:
$\mathscr{L}\{x\}=\int_{0}^{\infty} x e^{-s x} d x \rightarrow u=x, v^{\prime}=e^{-s x} \rightarrow u^{\prime}=1, v=-\frac{e^{-s x}}{s} \rightarrow\left[-\frac{x e^{-s x}}{s}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{e^{-s x}}{s} d x$
But we need to use L'Hopital's rule to evaluate the limit in the first term of this result:
$\lim _{x \rightarrow \infty}\left(\frac{-x}{s e^{s x}}\right)=\lim _{x \rightarrow \infty} \frac{-1}{s^{2} e^{s x}}=0$, so the result is that
$\mathscr{L}\{x\}=\int_{0}^{\infty} x e^{-s x} d x=\int_{0}^{\infty} \frac{e^{-s x}}{s} d x=\left[-\frac{e^{-s x}}{s^{2}}\right]_{0}^{\infty}=0-\left(-\frac{1}{s^{2}}\right)=\frac{1}{s^{2}}$

Finally, let's examine $\mathscr{L}\left\{x^{n}\right\}$:
If we use integration by parts we will get:
$\mathscr{L}\left\{x^{n}\right\}=\int_{0}^{\infty} x^{n} e^{-s x} d x \rightarrow u=x^{n}, v^{\prime}=e^{-s x} \rightarrow u^{\prime}=n x^{n-1}, v=-\frac{e^{-s x}}{s}$
$\rightarrow\left[-\frac{x^{n} e^{-s x}}{s}\right]_{0}^{\infty}+\int_{0}^{\infty} \frac{n x^{n-1} e^{-s x}}{s} d x$
By applying L'Hopital's rule like before we will get
$\mathscr{L}\left\{x^{n}\right\}=\int_{0}^{\infty} x^{n} e^{-s x} d x=\int_{0}^{\infty} \frac{n x^{n-1} e^{-s x}}{s} d x=\frac{n}{s} \int_{0}^{\infty} x^{n-1} e^{-s x} d x=\frac{n}{s} \mathscr{L}\left\{x^{n-1}\right\}$.

Successive applications of the integration by parts method will yield:
$\mathscr{L}\left\{x^{n}\right\}=\frac{n!}{s^{n}} \mathscr{L}\{1\}=\frac{n!}{s^{n}} * \frac{1}{s}=\frac{n!}{s^{n+1}}$.
4. Use the definition of the Laplace Transform to find $\mathscr{L}\{f(x)\}$ where $f(x)= \begin{cases}x & 0<x<1 \\ 0 & x>1\end{cases}$

$$
\begin{aligned}
& \mathscr{L}\{f(x)\}=\int_{0}^{1} x e^{-s x} d x+\int_{1}^{\infty} 0 * e^{-s x} d x=\int_{0}^{1} x e^{-s x} d x=\left[-\frac{x e^{-s x}}{s}\right]_{0}^{1}+\int_{0}^{1} \frac{e^{-s x}}{s} d x \\
& =-\frac{e^{-s}}{s}+\left[-\frac{e^{-s x}}{s^{2}}\right]_{0}^{1}=-\frac{e^{-s}}{s}-\frac{e^{-s}}{s^{2}}+\frac{1}{s^{2}}=-\frac{e^{-s}}{s}\left(1+\frac{1}{s}\right)+\frac{1}{s^{2}}=-\frac{e^{-s}}{s} * \frac{s+1}{s}+\frac{1}{s^{2}} \\
& =-\frac{e^{-s}(s+1)}{s^{2}}+\frac{1}{s^{2}}=\frac{1-e^{-s}(s+1)}{s^{2}}
\end{aligned}
$$

Variation of Parameters

- Reduction of order
- Let's say we have one solution y_{1} for a second-order linear homogeneous equation in standard form $y^{\prime \prime}+P(x) y^{\prime}+Q(x)=0$
- Now let's assume that $y_{2}=u(x) * y_{1}$ for some function $u(x)$
- Taking derivatives and simplifying, we get $y_{1} u^{\prime \prime}+\left(2 y_{1}{ }^{\prime}+P y_{1}\right) u^{\prime}=0$
- If we choose the substitution $w=u^{\prime}$, then we get a separable first-order equation that we can solve
- Ultimately, we get $u(x)=\int \frac{e^{-\int P(x) d x}}{\left[y_{1}(x)\right]^{2}} d x$
- Example: We know that $y_{1}=e^{-x}$ is a solution to the equation $y^{\prime \prime}+2 y^{\prime}+y=0$, which has repeated roots. What is the second linearly-independent solution to this equation?
* We get $u(x)=\int \frac{e^{-\int 2 d x}}{\left[e^{-x}\right]^{2}} d x=\int \frac{e^{-2 x}}{e^{-2 x}} d x=\int d x=x$, so $y_{2}=x e^{-x}$, which is what we had previously found to be true!
- The bottom line here is that multiplying one solution by a function of x can help to solve for a second solution. You won't be asked to use this method on a test, I am just including it here because it helps explain our rationale below (which you will need to apply).
- So now we can develop a general method for finding the particular solution y_{p} for a
nonhomogeneous equation $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)$ where $y_{h}=c_{1} y_{1}+c_{2} y_{2}$ is the general solution of the corresponding homogeneous equation $y_{h}{ }^{\prime \prime}+P(x) y_{h}{ }^{\prime}+Q(x) y_{h}=0$.
- We will make a similar assumption as we did above, and assume that $y_{p}=u_{1}(x) * y_{1}+u_{2}(x) * y_{2}$ for some functions u_{1}, u_{2}
- Taking the derivatives and substituting: $y_{p}{ }^{\prime \prime}+P(x) y_{p}{ }^{\prime}+Q(x) y_{p}=g(x)$, then simplifying, we

$$
\text { get: } \frac{d}{d x}\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+P\left[y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}\right]+\left(y_{1}^{\prime} u_{1}^{\prime}+y_{2}^{\prime} u_{2}^{\prime}\right)=g(x)
$$

- If we choose $y_{1} u_{1}{ }^{\prime}+y_{2} u_{2}{ }^{\prime}=0$ and $y_{1}{ }^{\prime} u_{1}{ }^{\prime}+y_{2}{ }^{\prime} u_{2}{ }^{\prime}=g(x)$ then $y_{p}=u_{1} y_{1}+u_{2} y_{2}$ will indeed be a solution to the nonhomogeneous equation
- Solving this system of equations, we get $u_{1}=-\int \frac{y_{2} g(x)}{y_{1} y_{2}{ }^{\prime}-y_{1}{ }^{\prime} y_{2}} d x$ and

$$
u_{2}=\int \frac{y_{1} g(x)}{y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}} d x
$$

Cauchy-Euler Equations

- Equation:
$-a\left(x-x_{0}\right)^{2} y^{\prime \prime}+b\left(x-x_{0}\right) y^{\prime}+c y=0, a \neq 0$
- Method of solution:
- We will try to find solutions of the form $y=\left(x-x_{0}\right)^{r}$ because $y^{\prime}=r\left(x-x_{0}\right)^{r-1}$ and $y^{\prime \prime}=r(r-1)\left(x-x_{0}\right)^{r-2}$
- Therefore our equation will become: $\operatorname{ar}(r-1)\left(x-x_{0}\right)^{r}+b r\left(x-x_{0}\right)^{r}+c\left(x-x_{0}\right)^{r}=0$
- Which will simplify to $a r^{2}+(b-a) r+c=0$, which we will call the characteristic equation
- Use quadratic formula to solve for r and don't forget about imaginary roots
- Three cases for our solution:
* Two real roots: general solution is $y=c_{1}\left(x-x_{0}\right)^{r_{1}}+c_{2}\left(x-x_{0}\right)^{r_{2}}$
* One real root:
- Our first solution is $y_{1}=c_{1}\left(x-x_{0}\right)^{r}$ with $r=\frac{a-b}{2 a}$ but we need to find a second linearly independent solution
- We can use reduction of order to solve for the second solution, which will have the form $y_{2}=u(x) * y_{1}$ and $u(x)=\int \frac{e^{-\int P(x) d x}}{\left[y_{1}(x)\right]^{2}} d x$
- To do this we first have to put our equation into standard form:
$y^{\prime \prime}+\frac{b}{a\left(x-x_{0}\right)} y^{\prime}+\frac{c}{a\left(x-x_{0}\right)^{2}} y=0$, for $x>x_{0}$
Then $u(x)=\iint_{d x} e^{-\frac{b}{a} \ln \left(x-x_{0}\right)}\left(x-x_{0}\right)^{-\frac{a-b}{a}} d x=\int\left(x-x_{0}\right)^{-\frac{b}{a}}\left(x-x_{0}\right)^{\frac{b}{a}}\left(x-x_{0}\right)^{-1} d x$
- Then

$$
=\int \frac{d x}{x-x_{0}}=\ln \left(x-x_{0}\right)
$$

- So $y_{2}=c_{2}\left(x-x_{0}\right)^{r} \ln \left(x-x_{0}\right)$
- Our general solution is $y=c_{1}\left(x-x_{0}\right)^{r}+c_{2}\left(x-x_{0}\right)^{r} \ln \left(x-x_{0}\right)$
* Imaginary roots:
- These will be of form $r=\alpha \pm \beta i$
- We can show that $\left(x-x_{0}\right)^{\alpha \pm \beta i}=\left(x-x_{0}\right)^{\alpha} e^{ \pm \beta i \ln \left(x-x_{0}\right)}$
- Then we use a similar method of simplification involving Euler's identity that we used for imaginary roots of the constant-coefficient homogeneous equations
- Our general solution is $y=\left(x-x_{0}\right)^{\alpha}\left[c_{1} \cos \left(\beta \ln \left(x-x_{0}\right)\right)+c_{2} \sin \left(\beta \ln \left(x-x_{0}\right)\right)\right]$
- We can solve nonhomogeneous Cauchy-Euler equations of the form $a\left(x-x_{0}\right)^{2} y^{\prime \prime}+b\left(x-x_{0}\right) y^{\prime}+c y=g(x)$ by first solving the homogeneous equation as described above to find y_{h} and then using variation of parameters to find y_{p}, for the general solution $y=y_{h}+y_{p}$

Laplace Transform: Definition

- In mathematics, a transform is an operation that takes a function as an input and outputs a different function
- Differentiation and Integration are both transforms!
- An integral transform is a particular kind of transform with the format
$T\{f(x)\}=\int_{x_{1}}^{x_{2}} K(s, x) f(x) d x=F(s)$
- We call the function $K(s, x)$ the kernel of the transform
- The transform takes a function of x as the input and outputs a function of s
- There are many useful integral transforms in mathematics, including the Fourier Transform, which decomposes a function into its fundamental frequency components
- We will be looking at the Laplace Transform, which is particularly useful for the study of differential equations and dynamical systems
- The kernel of the Laplace Transform is $K(s, x)=e^{-s x}$ and we integrate over the interval $[0, \infty]$
- Therefore, $\mathscr{L}\{f(x)\}=\int_{0}^{\infty} e^{-s x} f(x) d x=\lim _{N \rightarrow \infty} \int_{0}^{N} e^{-s x} f(x) d x$
- We can of course calculate this integral directly for many functions, but there are a number of useful identities that are summarized by table 7.1 in the textbook. You can find the derivations for these identities there too:

$f(t)$	$F(s)=\mathscr{L}\{f\}(s)$
1	$\frac{1}{s}, \quad s>0$
$e^{a t}$	$\frac{1}{s-a}, \quad s>a$
$t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{s^{n+1}}, \quad s>0$
$\sin b t$	$\frac{b}{s^{2}+b^{2}}, \quad s>0$
$\cos b t$	$\frac{s}{s^{2}+b^{2}}, \quad s>0$
$e^{a t} t^{n}, \quad n=1,2, \ldots$	$\frac{n!}{(s-a)^{n+1}}, \quad s>a$
$e^{a t} \sin b t$	$\frac{b}{(s-a)^{2}+b^{2}}, \quad s>a$
$e^{a t} \cos b t$	$\frac{s-a}{(s-a)^{2}+b^{2}}, \quad s>a$

- One very useful property of integral transforms comes from the linearity property of derivatives and integrals
- We have already seen how useful this property is for derivatives when solving nonhomogeneous equations!
- For any integral transform the following is true: $T\{a f(x)+b g(x)\}=a T\{f(x)\}+b T\{g(x)\}$

