MATH 20D – Dr. Xiao Section D07/D08 Ariel (Ari) Schreiman 4/27/21

Announcements

- Midterm 1 grades are released on gradescope

 Regrade requests are now closed, but if you have any questions feel free to email me
- Second MATLAB assignment due at 1:00pm PDT on Friday
- Fourth homework set due at 11:59pm PDT on Sunday

Example Problems

1. Find the general solution to $y'' + y = \sec x$

When solving this problem, we notice that $g(x) = \sec x$ is not a function we can annihilate, meaning that we cannot use the method of undetermined coefficients. However, the corresponding homogeneous equation $y_h'' + y_h = 0$ is easy to solve so we can attempt to use variation of parameters to solve our nonhomogeneous equation.

First solve for $y_h: y_h'' + y_h = 0 \rightarrow y_h = c_1 \sin x + c_2 \cos x$

Therefore, $y_p = u_1(x)\sin x + u_2(x)\cos x$.

Using the equations for u_1 , u_2 that we found in our section on variation of parameters we get:

$$u_{1} = -\int \frac{y_{2}g(x)}{y_{1}y_{2}' - y_{1}'y_{2}} dx = \int \frac{\cos x \sec x}{\sin^{2}x + \cos^{2}x} dx = \int \cos x \sec x \, dx = \int dx = x$$
$$u_{2} = \int \frac{y_{1}g(x)}{y_{1}y_{2}' - y_{1}'y_{2}} dx = \int \frac{\sin x \sec x}{-\sin^{2}x - \cos^{2}x} dx = -\int \sin x \sec x \, dx$$
$$= -\int \tan x \, dx = \ln|\cos x|$$

So $y_p = x \sin x + (\ln|\cos x|)\cos x$ and the general solution is: $y = c_1 \sin x + c_2 \cos x + x \sin x + \cos x \ln|\cos x|$

2. Find the general solution to $x^2y'' + xy' - y = \ln x$

We first start by finding the general solution to the homogeneous equation $x^2y'' + xy' - y = 0$. This is a Cauchy-Euler equation with $x_0 = 0$, so our solutions will be of the form $y = x^r$. Solving for our characteristic equation we get: $r(r-1) + r - 1 = 0 \rightarrow r^2 - 1 = 0 \rightarrow r = \pm 1$. So $y_h = c_1 x + c_2 x^{-1}$.

Next we will use variation of parameters to solve for y_p , making use of integration by parts to solve the integrals:

 $y_p = u_1 x + u_2 x^{-1}$

$$u_{1} = -\int \frac{x^{-1} \ln x}{x(-x^{-2}) - x^{-1}} dx = \frac{1}{2} \int \ln x \, dx \to u = \ln x, \ v' = 1 \to u' = x^{-1}, v = x$$
$$\to \frac{1}{2} \left[x \ln x - \int (1) dx \right] = \frac{1}{2} \left[x \ln x - x \right] = \frac{x}{2} \left[\ln x - 1 \right]$$

$$u_{2} = \int \frac{x \ln x}{x(-x^{-2}) - x^{-1}} dx = -\frac{1}{2} \int x^{2} \ln x \, dx \to u = \ln x, \ v' = x^{2} \to u' = x^{-1}, \ v = \frac{x^{3}}{3}$$
$$\to -\frac{1}{2} \left[\frac{x^{3} \ln x}{3} - \int \frac{x^{2}}{3} dx \right] = -\frac{1}{2} \left[\frac{x^{3} \ln x}{3} - \frac{x^{3}}{9} \right] = \frac{x^{3}}{6} \left[\frac{1}{3} - \ln x \right]$$

$$y_p = \frac{x}{2} [\ln x - 1] * x + \frac{x^3}{6} \left[\frac{1}{3} - \ln x \right] * x^{-1} = \frac{x^2 \ln x}{3} - \frac{4x^2}{9} = \frac{x^2}{3} \left[\ln x - \frac{4}{3} \right]$$

Therefore, the general solution is $y = c_1 x + c_2 x^{-1} + \frac{x^2}{3} \left[\ln x - \frac{4}{3} \right]$

3. Use the definition of the Laplace Transform to find \mathscr{L} {1}, \mathscr{L} {x}, \mathscr{L} { x^n }

First let's solve:
$$\mathscr{L}{1} = \int_0^\infty e^{-sx} dx = \left[-\frac{e^{-sx}}{s}\right]_0^\infty = 0 - \left(-\frac{1}{s}\right) = \frac{1}{s}.$$

Next we can try \mathscr{L} {*x*} by using integration by parts:

$$\mathscr{L}\{x\} = \int_0^\infty x e^{-sx} dx \to u = x, \ v' = e^{-sx} \to u' = 1, \ v = -\frac{e^{-sx}}{s} \to \left[-\frac{x e^{-sx}}{s}\right]_0^\infty + \int_0^\infty \frac{e^{-sx}}{s} dx$$

But we need to use L'Hopital's rule to evaluate the limit in the first term of this result:

 $\lim_{x \to \infty} \left(\frac{-x}{se^{sx}} \right) = \lim_{x \to \infty} \frac{-1}{s^2 e^{sx}} = 0, \text{ so the result is that}$ $\mathscr{L}\{x\} = \int_0^\infty x e^{-sx} dx = \int_0^\infty \frac{e^{-sx}}{s} dx = \left[-\frac{e^{-sx}}{s^2} \right]_0^\infty = 0 - \left(-\frac{1}{s^2} \right) = \frac{1}{s^2}$

Finally, let's examine $\mathscr{L}\left\{x^{n}\right\}$: If we use integration by parts we will get: $\mathscr{L}\left\{x^{n}\right\} = \int_{0}^{\infty} x^{n} e^{-sx} dx \rightarrow u = x^{n}, v' = e^{-sx} \rightarrow u' = nx^{n-1}, v = -\frac{e^{-sx}}{s}$

$$\rightarrow \left[-\frac{x^n e^{-sx}}{s}\right]_0^\infty + \int_0^\infty \frac{nx^{n-1} e^{-sx}}{s} dx$$

By applying L'Hopital's rule like before we will get

$$\mathscr{L}\left\{x^{n}\right\} = \int_{0}^{\infty} x^{n} e^{-sx} dx = \int_{0}^{\infty} \frac{n x^{n-1} e^{-sx}}{s} dx = \frac{n}{s} \int_{0}^{\infty} x^{n-1} e^{-sx} dx = \frac{n}{s} \mathscr{L}\left\{x^{n-1}\right\}.$$

Successive applications of the integration by parts method will yield:

$$\mathscr{L}\left\{x^{n}\right\} = \frac{n!}{s^{n}}\mathscr{L}\left\{1\right\} = \frac{n!}{s^{n}} * \frac{1}{s} = \frac{n!}{s^{n+1}}.$$

4. Use the definition of the Laplace Transform to find $\mathscr{L}{f(x)}$ where $f(x) = \begin{cases} x & 0 < x < 1 \\ 0 & x > 1 \end{cases}$

$$\mathscr{L}{f(x)} = \int_0^1 x e^{-sx} dx + \int_1^\infty 0 * e^{-sx} dx = \int_0^1 x e^{-sx} dx = \left[-\frac{x e^{-sx}}{s}\right]_0^1 + \int_0^1 \frac{e^{-sx}}{s} dx$$
$$= -\frac{e^{-s}}{s} + \left[-\frac{e^{-sx}}{s^2}\right]_0^1 = -\frac{e^{-s}}{s} - \frac{e^{-s}}{s^2} + \frac{1}{s^2} = -\frac{e^{-s}}{s} \left(1 + \frac{1}{s}\right) + \frac{1}{s^2} = -\frac{e^{-s}}{s} * \frac{s+1}{s} + \frac{1}{s^2}$$
$$= -\frac{e^{-s}(s+1)}{s^2} + \frac{1}{s^2} = \frac{1 - e^{-s}(s+1)}{s^2}$$

Variation of Parameters

- Reduction of order
 - Let's say we have one solution y_1 for a second-order linear homogeneous equation in standard form y'' + P(x)y' + Q(x) = 0
 - Now let's assume that $y_2 = u(x) * y_1$ for some function u(x)
 - Taking derivatives and simplifying, we get $y_1u'' + (2y_1' + Py_1)u' = 0$
 - If we choose the substitution w = u', then we get a separable first-order equation that we can solve

- Ultimately, we get
$$u(x) = \int \frac{e^{-\int P(x)dx}}{[y_1(x)]^2} dx$$

- Example: We know that $y_1 = e^{-x}$ is a solution to the equation y'' + 2y' + y = 0, which has repeated roots. What is the second linearly-independent solution to this equation?

* We get
$$u(x) = \int \frac{e^{-\int 2dx}}{[e^{-x}]^2} dx = \int \frac{e^{-2x}}{e^{-2x}} dx = \int dx = x$$
, so $y_2 = xe^{-x}$, which is what we

had previously found to be true!

- The bottom line here is that multiplying one solution by a function of x can help to solve for a second solution. You won't be asked to use this method on a test, I am just including it here because it helps explain our rationale below (which you will need to apply).
- So now we can develop a general method for finding the particular solution y_p for a

nonhomogeneous equation y'' + P(x)y' + Q(x)y = g(x) where $y_h = c_1y_1 + c_2y_2$ is the general solution of the corresponding homogeneous equation $y_h'' + P(x)y_h' + Q(x)y_h = 0$.

- We will make a similar assumption as we did above, and assume that
- $y_p = u_1(x)*y_1 + u_2(x)*y_2$ for some functions u_1 , u_2
- Taking the derivatives and substituting: $y_p'' + P(x)y_p' + Q(x)y_p = g(x)$, then simplifying, we get: $\frac{d}{dx}[y_1u_1' + y_2u_2'] + P[y_1u_1' + y_2u_2'] + (y_1'u_1' + y_2'u_2') = g(x)$
- If we choose $y_1u_1' + y_2u_2' = 0$ and $y_1'u_1' + y_2'u_2' = g(x)$ then $y_p = u_1y_1 + u_2y_2$ will indeed be a solution to the nonhomogeneous equation
- Solving this system of equations, we get $u_1 = -\int \frac{y_2 g(x)}{y_1 y_2' y_1' y_2} dx$ and

$$u_2 = \int \frac{y_1 g(x)}{y_1 y_2' - y_1' y_2} dx$$

Cauchy-Euler Equations

• Equation:

$$-a(x-x_0)^2y'' + b(x-x_0)y' + cy = 0, a \neq 0$$

- Method of solution:
 - We will try to find solutions of the form $y = (x x_0)^r$ because $y' = r(x x_0)^{r-1}$ and $y'' = r(r-1)(x x_0)^{r-2}$
 - Therefore our equation will become: $ar(r-1)(x-x_0)^r + br(x-x_0)^r + c(x-x_0)^r = 0$
 - Which will simplify to $ar^2 + (b-a)r + c = 0$, which we will call the *characteristic equation*
 - Use quadratic formula to solve for r and don't forget about imaginary roots
 - Three cases for our solution:
 - * Two real roots: general solution is $y = c_1(x x_0)^{r_1} + c_2(x x_0)^{r_2}$
 - * One real root:
 - Our first solution is $y_1 = c_1(x x_0)^r$ with $r = \frac{a b}{2a}$ but we need to find a second linearly independent solution
 - $\cdot\,$ We can use reduction of order to solve for the second solution, which will have

the form
$$y_2 = u(x) * y_1$$
 and $u(x) = \int \frac{e^{-\int P(x)dx}}{[y_1(x)]^2} dx$

· To do this we first have to put our equation into standard form:

$$y'' + \frac{b}{a(x-x_0)}y' + \frac{c}{a(x-x_0)^2}y = 0, \text{ for } x > x_0$$

$$u(x) = \int e^{-\frac{b}{a}\ln(x-x_0)}(x-x_0)^{-\frac{a-b}{a}}dx = \int (x-x_0)^{-\frac{b}{a}}(x-x_0)^{\frac{b}{a}}(x-x_0)^{-1}dx$$

$$= \int \frac{dx}{x-x_0} = \ln(x-x_0)$$

$$\therefore \text{ So } y_2 = c_2(x-x_0)^r \ln(x-x_0)$$

• Our general solution is $y = c_1(x - x_0)^r + c_2(x - x_0)^r \ln(x - x_0)$

- * Imaginary roots:
 - These will be of form $r = \alpha \pm \beta i$
 - We can show that $(x x_0)^{\alpha \pm \beta i} = (x x_0)^{\alpha} e^{\pm \beta i \ln(x x_0)}$
 - Then we use a similar method of simplification involving Euler's identity that we used for imaginary roots of the constant-coefficient homogeneous equations
 - Our general solution is $y = (x x_0)^{\alpha} [c_1 \cos(\beta \ln(x x_0)) + c_2 \sin(\beta \ln(x x_0))]$

• We can solve nonhomogeneous Cauchy-Euler equations of the form $a(x-x_0)^2y'' + b(x-x_0)y' + cy = g(x)$ by first solving the homogeneous equation as described above to find y_h and then using variation of parameters to find y_p , for the general solution $y = y_h + y_p$

Laplace Transform: Definition

- In mathematics, a transform is an operation that takes a function as an input and outputs a different function
 - Differentiation and Integration are both transforms!
- An integral transform is a particular kind of transform with the format

 $T\{f(x)\} = \int_{x_1}^{x_2} K(s, x) f(x) dx = F(s)$

- We call the function K(s, x) the *kernel* of the transform
- The transform takes a function of x as the input and outputs a function of s
- There are many useful integral transforms in mathematics, including the Fourier Transform, which decomposes a function into its fundamental frequency components
- We will be looking at the Laplace Transform, which is particularly useful for the study of differential equations and dynamical systems
- The kernel of the Laplace Transform is $K(s, x) = e^{-sx}$ and we integrate over the interval $[0, \infty]$
- Therefore, $\mathscr{L}{f(x)} = \int_0^\infty e^{-sx} f(x) dx = \lim_{N \to \infty} \int_0^N e^{-sx} f(x) dx$
- We can of course calculate this integral directly for many functions, but there are a number of useful identities that are summarized by table 7.1 in the textbook. You can find the derivations for these identities there too:

Table 7.1 Brief Table of Laplace Transforms	
$f\left(t ight)$	$F\left(s ight) {=} \mathscr{L}\left\{f ight\}\left(s ight)$
1	$rac{1}{s} \;, \qquad s>0$
e^{at}	$rac{1}{s-a}\;,\qquad s>a$
$t^n, n=1,2,\ldots.$	$rac{n!}{s^{n+1}} \ , \qquad s>0$
sinbt	$rac{b}{s^2+b^2}\;,\qquad s>0$
cosbt	$rac{s}{s^2+b^2}\;,\qquad s>0$
$e^{at}t^n, n=1,2,\ldots.$	$rac{n!}{(s-a)^{n+1}}\;,\qquad s>a$
$e^{at}\sin bt$	$rac{b}{(s-a)^2+b^2}\;,\qquad s>a$
$e^{at}\cos bt$	$rac{s-a}{(s-a)^2+b^2}\;,\qquad s>a$

- One very useful property of integral transforms comes from the linearity property of derivatives and integrals
 - We have already seen how useful this property is for derivatives when solving nonhomogeneous equations!
 - For any integral transform the following is true: $T{af(x) + bg(x)} = aT{f(x)} + bT{g(x)}$