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5/04/21
 
Announcements

• Fifth Homework due this Sunday at 11:59pm PDT
• Midterm 2 is coming up soon!

– May 14th
– Expect announcements to come about the material on the test
– I will hold a review session next week, likely Wednesday May 12th, but wait for my 

announcement
 
Example Problems
1. Solve  with initial conditions y⁗ - 2y‴ + 5y″ - 8y′ + 4y = 4

.y 0 = 0,  y′ 0 = 1,  y″ 0 = 3,  y‴ 0 = 1( ) ( ) ( ) ( )
 
We notice that this can either be solved using Laplace transforms or using our undetermined coefficients–
annihilator approach we discussed a couple weeks ago. I will go through both methods of solution so you 
can compare them.
 
Laplace method:

L y⁗ - 2y‴ + 5y″ - 8y′ + 4y = L 4{ } { }
L y⁗ - 2L y‴ + 5L y″ - 8L y′ + 4L y = L 4{ } { } { } { } { } { }s Y s - s y 0 - s y′ 0 - sy″ 0 - y‴ 0 - 2 s Y s - s y 0 - sy′ 0 - y″ 04 ( ) 3 ( ) 2 ( ) ( ) ( ) 3 ( ) 2 ( ) ( ) ( )+5 s Y s - sy 0 - y′ 0 - 8 sY s - y 0 + 4 Y s =2 ( ) ( ) ( ) ( ( ) ( )) ( ( )) 4

s
s - 2s + 5s - 8s + 4 Y s - s - s - = 04 3 2 ( ) 2 4

ss s - 2s + 5s - 8s + 4 Y s = s + s + 44 3 2 ( ) 3 2
Y s =( ) s + s + 4

s s - 2s + 5s - 8s + 43 24 3 2
Now we need to factor the denominator. We can notice that if there are any integer roots of the quartic 
polynomial, it will be a factor of 4 (try multiplying the polynomial out again to confirm this is correct). 
Therefore we can test if any of:  are factors of this s - 1 ,  s + 1 ,  s - 2 ,  s + 2 ,  s - 4 ,  s + 4( ) ( ) ( ) ( ) ( ) ( )
polynomial. Let's first try :s - 1( )
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So now we have . Once again, we can test roots of the form Y s =( ) s + s + 4
s s - 1 s - s + 4s - 43 2( ) 3 2

, although we should remember that it is not guaranteed s - 1 ,  s + 1 ,  s - 2 ,  s + 2 ,  s - 4 ,  s + 4( ) ( ) ( ) ( ) ( ) ( )
any of these will work – we could have imaginary or irrational roots! Let's try  this time:s + 2( )

So  is not a factor of this cubic polynomial. In fact, only  is an integer factor of it:s + 2( ) s - 1( )

 has the complex roots  so we do not need to factor further. Now we can use partial fraction s + 42 ±2i
decomposition to aid us in finding the inverse Laplace transform:

Y s = = + + +( ) s + s + 4
s s - 1 s + 43 2( )2 2 A

s
B

s - 1 C
s - 1( )2 Ds + E

s + 42

 

(7)



We see that 0 is a real, nonrepeated root, so we can multiply both sides of the equation by s and evaluate 
at  to find A:s = 0 = A + + + ss + s + 4

s - 1 s + 43 2( )2 2 B
s - 1 C

s - 1( )2 Ds + E
s + 42

= A + 00 + 40 - 1 0 + 4( )2( )∴ A = 1
Now let's find a common denominator and simplify to solve for the remaining constants:

+ + +1 s - 1 s + 4
s s - 1 s + 4( )2 2( )2 2 B s - 1 s + 4 s

s - 1 s - 1 s + 4 s
( ) 2( )( ) 2 C s + 4 s

s - 1 s + 4 s
2( )2 2 Ds + E s - 1 s

s + 4 s - 1 s
( )( )22 ( )2

 =B+D+1 s + -B+C+E-2D-2 s + 4B-2E+D+5 s + -4B+4C+E-8 s+4
s s-1 s +4( ) 4 ( ) 3 ( ) 2 ( )( )2 2 0s +1s +1s +0s+4

s s-1 s +44 3 2( )2 2
s :4 B + D + 1 = 0s :3 -B + C + E - 2D- 2 = 1s :2 4B - 2E + D + 5 = 1s : -4B + 4C + E - 8 = 0c : 4 = 4

This we can solve using algebraic methods or linear algebra, and the results are:

A = 1;  B = - ;  C = ;  D = - ;  E =1725 65 825 1225
Y s = - + +( ) 1

s
1725 1

s - 1 65 1
s - 1( )2 - s +

s + 4825 12252
= - + - +1

s
1725 1

s - 1 65 1
s - 1( )2 825 s

s + 42 625 2
s + 42

y = 1 - e + xe - 2x + 2x1725 x 65 x 825 cos 625 sin
 
Undetermined Coefficients–Annihilator Approach method:
We first want to solve the corresponding homogeneous equation .y ⁗ - 2y ‴ + 5y ″ - 8y ′ + 4y = 0h h h h h
 

D - 2D + 5D - 8D + 4 y = 04 3 2 h
D - 1 D + 4 y = 0( )2 2

y = c e + c xe + c 2x + c 2xh 1 x 2 x 3 cos 4 sin
Note that the factorization of the differential operator is the same as the factorization of our denominator 
which we worked out earlier.
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Next we need to find a particular solution  using the method of undetermined coefficients:yp
D D - 1 D + 4 y = D 4 = 0( )2 2 p ( )

y = c e + c xe + c 2x + c 2x + c = y + cp 1 x 2 x 3 cos 4 sin 5 h 5y = cp 5y ′ = 0,  …p∴ 4c = 4 c = 1 y = 15 → 5 → p
So we get the general solution of our nonhomogeneous equation and can solve for the initial conditions:

y = c e + c xe + c 2x + c 2x + 11 x 2 x 3 cos 4 siny′ = c e + c e + xe + c -2 2x + c 2 2x1 x 2 x x 3[ sin ] 4[ cos ]
y″ = c e + c 2e + xe + c -4 2x + c -4 2x1 x 2 x x 3[ cos ] 4[ sin ]
y‴ = c e + c 3e + xe + c 8 2x + c -8 2x1 x 2 x x 3[ sin ] 4[ cos ]

y : c + c + 1 = 01 3y′ : c + c + 2c = 11 2 4y″ : c + 2c - 4c = 31 2 3y‴ : c + 3c - 8c = 11 2 4
 ∴ c = - ;  c = ;  c = - ;  c =1 1725 2 65 3 825 4 625
And therefore our particular solution is:

y = 1 - e + xe - 2x + 2x1725 x 65 x 825 cos 625 sin
Which is identical to what we found using the Laplace method!
 
Note: with both methods, we needed to factor a polynomial and then solve a system of linear equations 
for 4 constants, and therefore take about the same amount of effort. In this case, I would personally use 
undetermined coefficients because it requires slightly less algebra and therefore means I'm less likely to 
make a mistake. However, there are many problems which the Laplace method can solve that the 
undetermined coefficients method cannot!
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2. Suppose we have two hanging masses connected with springs like this:

On the left we have a diagram depicting the springs, masses, and their equilibrium positions (note that 
our position axis is vertical and increases downward). On the right we show the force balance on each 
object based on Hooke's law , where k is the spring constant and  is the distance that the F = k*∆x ∆x
spring is stretched. Note that we ignore gravity because that only affects the equilibrium positions of the 
two masses.
 
Mathematically, we have:

F = m a -k x + k x - x = m x ″∑ 1 1 1 → 1 1 2( 2 1) 1 1
F = m a -k x - x = m x ″∑ 2 2 2 → 2( 2 1) 2 2

 
 
For this problem, we will have both masses be 1kg, the spring constants are 6 N/m and 4 N/m, 
respectively, and both masses start at rest with displacement 20cm = 0.2m (spring 1 is stretched by 20cm 
and spring 2 is unstretched).
 
Therefore, we set .m = m = 1,  k = 6,  k = 4,  x 0 = x 0 = 0.2,  x ′ 0 = 0,  x ′ 0 = 01 2 1 2 1( ) 2( ) 1 ( ) 2 ( )
 
We get the following system of differential equations:

x ″ + 10x - 4x = 01 1 2x ″ - 4x + 4x = 02 1 2
 
Let's take the Laplace transform of both equations:

s X - sx 0 - x ′ 0 + 10X - 4X = 02 1 1( ) 1 ( ) 1 2s X - sx 0 - x ′ 0 - 4X + 4X = 02 2 2( ) 2 ( ) 1 2
s

 

(1)

(2)



s X - + 10X - 4X = 02 1 s5 1 2
s X - - 4X + 4X = 02 2 s5 1 2

s + 10 X - 4X =2 1 2 s5
s + 4 X - 4X =2 2 1 s5

X = - + s + 10 X2 s20 14 2 1
s + 4 X - 4X =2 2 1 s5

s + 4 - + s + 10 X - 4X =2 s20 14 2 1 1 s5
s + 4 s + 10 - 4 X = + s + 414 2 2 1 s5 s20 2
+ + 6 X = =s44 7s22 1 4s + s s + 4202 s + 8s203
+ + 6 X = =s44 7s22 1 4s + s s + 4202 s + 8s203

X =1 s + 8s5s + 70s + 12034 2
X = - + s + 102 s20 14 2 s + 8s5s + 70s + 12034 2

X = - + = =2 s s +14s +2420 s +14s +244 2
4 2 s +8s s +104 5s +70s +1203 2

4 2 -s -14s -24s+s +18s +80s20s +280s +4805 3 5 34 2 4s +56s20s +280s +48034 2
X =2 s + 14s5s + 70s + 12034 2

We see that both  and  have the same denominator: X s1( ) X s2( )5s + 70s + 120 = 5 s + 14s + 24 = 5 s + 12 s + 24 2 4 2 2 2 
 
Therefore, we have to find the inverse Laplace transforms of 

 and X = = +1 15 s + 8s
s + 12 s + 232 2 15 As + B

s + 122 Cs + D
s + 22

X = = +2 15 s + 14s
s + 12 s + 232 2 15 Es + F

s + 122 Gs + H
s + 22

 
For , we find the constants A–D:X1
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= + = +s + 8s
s + 12 s + 232 2 As + B

s + 122 Cs + D
s + 22 As + B s + 2

s + 12 s + 2( ) 2
2 2 Cs + D s + 12

s + 2 s + 12( ) 2
2 2

 

Therefore, A + C = 1,  B + D = 0,  2A + 12C = 8,  2B + 12D = 0 A = ,  B = 0,  C = ,  D = 0→ 25 35
 
For , we find E–H:X2 = + = +s + 14s
s + 12 s + 232 2 Es + F

s + 122 Gs + H
s + 22 Es + F s + 2

s + 12 s + 2( ) 2
2 2 Gs + H s + 12

s + 2 s + 12( ) 2
2 2

E + G = 1,  F + H = 0,  2E + 12G = 14,  2F + 12H = 0 E = - ,  F = 0,  G = ,  H = 0→ → 15 65
 
So we will be taking the inverse Laplace transforms of:

X = +1 225 s
s + 122 325 s

s + 22
X = - +2 125 s

s + 122 625 s
s + 22

x t = 2 t + t ;  x t = - 2 t + t1( ) 225 cos 3 325 cos 2 2( ) 125 cos 3 625 cos 2
 
If we assume each spring has length 40cm and the equilibrium position of the second object is 1m above 
the ground, we can plot the simultaneous motion of the two objects:
 

As we can see, both objects start 20cm above their equilibrium positions and spring 1 is compressed by 
20cm. Since the motion for object 2 is coupled to object 1 through the weaker spring 2 (k=4N/m), we see 
that it primarily oscillates at a slower frequency, while object 1 primarily oscillates at a faster frequency 
associated with the stronger spring 1 (k=6N/m).
3. Find the solution to  with initial conditions .y″ + 3xy′ - 6y = 1 y 0 = 0, y′ 0 = 0( ) ( )
 
We see that this is a linear second order equation, but it is neither constant-coefficient or Cauchy-Euler, 
so we cannot solve it through the methods we have learned previously, and must use Laplace transforms 
to solve.
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L y″ + 3xy′ - 6y = L 1{ } { }
s Y s - sy 0 - y′ 0 + 3 -1 L y′ - 6Y s =2 ( ) ( ) ( ) ( ) dds { } ( ) 1

s
s Y s - sy 0 - y′ 0 - 3 sY s - y 0 - 6Y s =2 ( ) ( ) ( ) d

ds [ ( ) ( )] ( ) 1
s

s Y s - 3 sY s - 6Y s =2 ( ) d
ds [ ( )] ( ) 1

s
s Y s - 3 Y s + sY′ s - 6Y s =2 ( ) ( ( ) ( )) ( ) 1

s
-3s Y′ s + s - 9 Y s =( ) ( ) 2 ( ) 1

s
Y′ s + - Y s = -( ) s - 93s2 ( ) 13s2

We see that this is a linear first-order differential equation and can use an integrating factor to solve for 
.Y s( )

) s = e = e = e = e e = e e = s e( ) - ds∫ s - 93s2 - ds+ ds∫ s3 ∫3s - +3 ss62 ln -s62 3 sln -s62
sln 3 3 -s62

Y s = =( ) - ds + c) s
∫ ) s3s( )2( ) - e ds + c

s e
∫ s3 -s62

3 -s62

u = - u′ = -s62 → s3
Y s = = = + e→ ( ) e du + c

s e
∫ u

3 -s62 e + c
s e
u
3 -s62 1

s3 c
s3 s62

Since we want to find a function , which is continuous on , this means that  y x( ) 0, ∞[ ) L y x = 0lims ∞→ { ( )}
because  must be of exponential order.y x( )
Since , we must choose  in order to get a function  which has a continuous s e = ∞lims ∞→ -3 s62

c = 0 Y s( )
inverse Laplace transform.
 
Therefore:

y x = L Y s = L = L =( ) -1{ ( )} -1 1
s3 12 -1 2!

s3 x22
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Laplace Transform: Properties

• Remember that we discussed the Linearity Property last week and reviewed table 7.1 (see last  
week's notes)

• Now we have a number of new properties:

• Sufficient conditions for Laplace transform of a function to exist:
– Piecewise continuous

* Finite number points that are discontinuities on 0, ∞[ )
* Discontinuities must be finite

· If there is a discontinuity at  then this is finite if:x = k
·  and  both existf xlimx k→ + ( ) f xlimx k→ - ( )
· For example, the unit step function has a finite discontinuity at :x = 0

· But  has an infinite discontinuity at :f x = x( ) -1 x = 0

 

-2 -1 1 2 30

1

-4 -2 2 4 60

-2

2



– Exponential order
* If there exist constants , , and , such that  for all  then c M > 0 T > 0 |f x | ⩽ Me( ) cx x > T

 is of exponential orderf x( )
* Essentially, if we can find an exponential function that "grows" faster than f, then f is of 

exponential order

· This is the same as asking if  exists for some value limx ∞→ f x
e
( )
cx c

*  is of exponential order but  is notf x = x( ) 2 f x = e( ) x2
– If these two conditions are met then we are guaranteed that the Laplace transform exists for  

, but there are some functions that don't meet one or both whose Laplace transforms s > c
nevertheless do exist!

* For example,  is not of exponential order but does have a Laplace f x = 2xe x( ) x2 cos 2
transform!

– If both conditions are met, then .L f x = 0lims ∞→ { ( )}
 
Laplace Transform: Calculating the Inverse Transform

• Suppose we have a function  that is a Laplace transform, and we want to get back the F s( )
corresponding function  such that f x( ) L f x = F s{ ( )} ( )

• If we can find a function  that is continuous over  then that is the only such function with f x( ) 0, ∞[ )
the Laplace transform F s( )

– However there will exist an infinite number of functions which are only piecewise continuous 
which have the same Laplace transform

– For example, in section 7.4 of the textbook, they provide the function , g x =( ) x x ≠ 60 x = 6
which has the same Laplace transform  as the function 

1
s2 f x = x( )

• We can actually find a second integral transform  which equals  if there exists a L F s-1{ ( )} f x( )
function  that is continuous over  such that .f x( ) 0, ∞[ ) L f x = F s{ ( )} ( )

– We will not go into the details of this integral transform, because it is out of the scope of this 
class

– However, the fact that it is another integral transform means that the inverse Laplace 
transform also has the linearity property!

* L aF s + bG s = af x + bg x-1{ ( ) ( )} ( ) ( )
• For this class, we will use a combination of simplification and knowledge of the properties in tables 

7.1 and 7.2 to find the inverse transform

• One useful trick is partial fraction decomposition for the quotient of two polynomials 
M s
N s

( )( )
– We will often see expressions of this form when trying to find an inverse Laplace transform 

and would like to simplify so we can use the known identities to solve the problem
– First, we need to make sure we have a fraction where the highest power of s in the numerator 

is at most one less than the highest power of s in the denominator

M s( ) N s( )

 



* If  is of order higher than , we will first use polynomial long division to get a M s( ) N s( )
sum , where  is the number of times that  divides  and  D s +( ) R s

N s
( )( ) D s( ) N s( ) M s( ) R s( )

is the remainder

*  is now a fraction that fits our requirement
R s
N s

( )( )
* We do polynomial long division just like regular long division:

 

–  Next, we need to factor the denominator as much as possible
* We will get terms of the form  for real roots and terms of the form s - r( )

 for imaginary roots s - 2.s + . + /2 2 2 . ± /i
* We should end up with a fraction looking like this: ,m s + m s … m s + m

s - r s - r … s - r s - 2. s + . + / … s - 2. s + . + /n-1 n-1 n-2 n-2 1 0( 1)( 2) ( a) 2 1 21 21 2 b 2b 2b a + b = n
· If there is a constant in the denominator after factoring, just divide that into the 

numerator so that we have the form above
* We will "decompose" this fraction into the sum:

 



+ … + …A
s - r1 B

s - r2 Cs + D
s - 2. s + . + /2 1 21 21

Es + F
s - 2. s + . + /2 2 22 22

* Note: if there are repeated roots, then we will have to decompose like this:

· = + + …M s
s - r

( )( )n A
s - r

B
s - r( )2 C

s - r( )3 D
s - r( )n

· 

=M s
s - 2.s + . + /( )2 2 2 n

+ …As + B
s - 2.s + . + /2 2 2 Cs + D

s - 2.s + . + /2 2 2 2
* We can solve for all the constants on non-repeated real root terms in the following way:

· Multiply both sides of the equation by the denominator
· Set s = r
· We should get , where A = M r

r - r …( )( 2) N s = s - r s - r …( ) ( 1)( 2)
* For repeated roots or imaginary roots, we will then solve a system of equations for the 

remaining constants
– Once we have completed our decomposition, we can take advantage of the linearity property 

of the inverse Laplace transform and use the identities in table 7.1 to find .f x( )
– This method might sound tedious. It really can be. But this technique is very useful for  

fractions where  is a quadratic, cubic, or quartic, and doesn't take too long in these cases.N s( )
 
Laplace Transform: Solving Initial Value Problems

• Now that we know how to calculate inverse Laplace transforms, we can start to solve differential 
equations!

• Recall that table 7.2 shows identities for the Laplace transforms of derivatives
– These equations require us to know the initial conditions , , etcf 0( ) f′ 0( )

• If we take the Laplace transform of both sides of a differential equation, then we get an algebraic 
equation to solve for F s( )

• We should end up with F s =( ) M s
N s

( )( )
• Now we just take the inverse Laplace transform of both sides:

• f x = L F s = L ( ) -1{ ( )} -1 M s
N s

( )( )
• By solving for the inverse Laplace transform, we end up getting the particular solution to the 

original differential equation based on our initial conditions!

 


