Midterm 2 Review

Ariel (Ari) Schreiman
6/8/21

General Tips

- Make sure you know when you will take the final:
- Check http://www.math.ucsd.edu/~m3xiao/math20d/Announcements.html for timing and details
- Not cumulative, so you need to really know the stuff from the past few weeks
- You don't want to lose points because you take an integral, derivative, Laplace transform, or partial fraction decomposition incorrectly
- Include tables of common identities in your notes
- Remember: when we have a expression like $\frac{e^{-s}+s}{(s+1)(s+2)}$, we separate the exponential parts and then factor it out before doing any partial fraction decomposition.

$$
* \frac{e^{-s}+s}{(s+1)(s+2)}=e^{-s}\left[\frac{1}{(s+1)(s+2)}\right]+\frac{s}{(s+1)(s+2)}
$$

- Check your work!
- Whenever you get a solution to a differential equation, it is easy to confirm that your solution is correct by plugging it back into the original equation

Advanced Laplace Transforms

- See Midterm 2 Review for general discussion about Laplace transforms and a table (copied from the textbook) of most common ones
- The only new things are convolutions and Dirac delta functions
- Convolutions: $f \circledast g=\int_{0}^{t} f(t-\tau) g(\tau) d \tau, f \circledast g=g \circledast f$
- Relation to Laplace transform: $\mathscr{L}\{f \circledast g\}=F(s) G(s)$ and $\mathscr{L}^{-1}\{F(s) G(s)\}=f \circledast g$
- So we can solve integro-differential equations by making sure the integral is in the format above and then taking the Laplace transform of both sides
- Dirac delta function: $\delta(x-a)= \begin{cases}\infty & x=a \\ 0 & x \neq a\end{cases}$
- Relation to Laplace transform: $\mathscr{L}\{\delta(x-a)\}=e^{-a s}$
- Remember:
$\mathscr{L}^{-1}\left\{e^{-a s} F(s)\right\}=f(x-a) \mathscr{U}(x-a)$
- Example Problem 1 (Convolutions): $y(t)=t e^{t}+\int_{0}^{t} \tau y(t-\tau) d \tau$
$-Y(s)=\frac{1}{(s-1)^{2}}+\frac{1}{s^{2}} Y(s)$
$-Y(s)\left[\frac{s^{2}-1}{s^{2}}\right]=\frac{1}{(s-1)^{2}}$
$-Y(s)=\frac{s^{2}}{(s-1)^{3}(s+1)}=\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{(s-1)^{3}}+\frac{D}{s+1}$
$-Y(s)=\frac{1}{8}\left(\frac{1}{s-1}\right)+\frac{3}{4}\left(\frac{1}{(s-1)^{2}}\right)+\frac{1}{2}\left(\frac{1}{(s-1)^{3}}\right)-\frac{1}{8}\left(\frac{1}{s+1}\right)$
$-y=\frac{1}{8} e^{t}+\frac{3}{4} t e^{t}+\frac{1}{2}\left(\frac{1}{2} t^{2} e^{t}\right)-\frac{1}{8} e^{-t}=\frac{e^{t}}{8}\left[2 t^{2}+6 t+1\right]-\frac{e^{-t}}{8}$
- Example problem 2 (Dirac-delta function): $y^{\prime \prime}=\delta(t-2), y(0)=0, y^{\prime}(0)=0$
$-s^{2} Y(s)=e^{-2 s}$
$-Y(s)=\frac{e^{-2 s}}{s^{2}}=e^{-2 s}\left[\frac{1}{s^{2}}\right]$
$-y=(t-2) \mathscr{U}(t-2)$

Series Solutions

- Because of Taylor's theorem, the power series $f(x)=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ can be used to solve any linear differential equation
- Method of solution:
- First put equation in standard form: $y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=g(x)$ (or equivalent for higher derivatives of y)
- Find a point x_{0} where $\mathrm{P}(\mathrm{x}), \mathrm{Q}(\mathrm{x})$, and $\mathrm{g}(\mathrm{x})$ are all defined and have a continuous derivative
- Set $y=\sum_{k=0}^{\infty} a_{k}\left(x-x_{0}\right)^{k}$ and calculate all needed derivatives of y using the power rule
- Find power series representations of $P(x), Q(x)$, and $g(x)$
- Plug everything into the original equation and use algebraic techniques to combine all terms into one summation: $\sum_{n=0}^{\infty} c_{n}\left(x-x_{0}\right)^{n}=0$
- Every constant c is a function of the constants a in the power series, and every value $c_{n}=0, n \geqslant 0$ so we can solve for the values of a in our power series
* We see that our initial conditions give us $y\left(x_{0}\right)=a_{0}, y^{\prime}\left(x_{0}\right)=a_{1}$
- Example problem: $y^{\prime \prime}+x y^{\prime}+2 y=0, y(0)=3, y^{\prime}(0)=-2$

$$
\begin{aligned}
& y=\sum_{k=0}^{\infty} a_{k} x^{k} \rightarrow y^{\prime}=\sum_{k=1}^{\infty} k a_{k} x^{k-1} \rightarrow y^{\prime \prime}=\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2} \\
& \sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2}+x \sum_{k=1}^{\infty} k a_{k} x^{k-1}+2 \sum_{k=0}^{\infty} a_{k} x^{k}=0 \\
& -\sum_{k=2}^{\infty} k(k-1) a_{k} x^{k-2}+\sum_{k=1}^{\infty} k a_{k} x^{k}+\sum_{k=0}^{\infty} 2 a_{k} x^{k}=0 \\
& 2 a_{2}+2 a_{0}+\left[\sum_{k=3}^{\infty} k(k-1) a_{k} x^{k-2}+\sum_{k=1}^{\infty} k a_{k} x^{k}+\sum_{k=1}^{\infty} 2 a_{k} x^{k}\right]=0 \\
& a_{0}=3 \\
& a_{1}=-2 \\
& a_{2}=-3 \\
& (k+2)(k+1) a_{k+2}+(k+2) a_{k}=0, k \geqslant 1 \\
& -a_{n}=-\frac{a_{n-2}}{n-1}, n \geqslant 3 \\
& a_{3}=1 \\
& a_{4}=1 \\
& a_{5}=-\frac{1}{4} \\
& \vdots \\
& -y=3-2 x-3 x^{2}+x^{3}+x^{4}-\frac{x^{5}}{4}+\ldots \\
&
\end{aligned}
$$

Systems of First-Order Differential Equations

- We might have a system of equations like this: $\frac{d}{d t} \mathbf{x}(t)=A \mathbf{x}(t)+\mathbf{g}(t)$, where $\mathbf{x}(t)=\left[\begin{array}{c}x_{1}(t) \\ x_{2}(t) \\ \vdots\end{array}\right]$ and

A is a square matrix with real (constant) values in all entries

- Remember, this is just a fancier way of writing a system of equations
- Method of solution:
- First solve homogeneous equation $\mathbf{x}^{\prime}=A \mathbf{x}$
* Solutions will be of the form $\mathbf{x}=e^{r t} \mathbf{u}$, where r is an eigenvalue of the system and u is a corresponding eigenvector
- Eigenvalue equation is $(A-r \mathbf{I}) \mathbf{u}=\mathbf{0}$
- Take the determinant of $A-r \mathbf{I}$ and set equal to zero to solve for the eigenvalues
- Determinant of a 2×2 matrix $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]: a d-b c$

Determinant of a 3×3 matrix $\left[\begin{array}{ccc}a & b & c \\ d & e & f \\ g & h & i\end{array}\right]: a\left|\begin{array}{cc}e & f \\ h & i\end{array}\right|-b\left|\begin{array}{ll}d & f \\ g & i\end{array}\right|+c\left|\begin{array}{ll}d & e \\ g & h\end{array}\right|$, where the straight lines indicate determinants of the 2×2 matrices Distinct real eigenvalues: solution is $\mathbf{x}=c_{1} \mathbf{u}_{1} e^{r_{1} t}+c_{2} \mathbf{u}_{2} e^{r_{2} t}$

- Repeated eigenvalue: solution is $\mathbf{x}=c_{1} \mathbf{u} e^{r t}+c_{2} e^{r t}[t \mathbf{u}+\mathbf{v}]$ where $(A-r \mathbf{I}) \mathbf{v}=\mathbf{u}$
- Imaginary eigenvalues: solution is $\mathbf{x}=c_{1} e^{\alpha t}[\mathbf{a} \cos \beta t-\mathbf{b} \sin \beta t]+c_{2} e^{\alpha t}[\mathbf{a} \sin \beta t+\mathbf{b} \cos \beta t]$, where the eigenvalues are $\alpha \pm \beta i$ and eigenvectors are $\mathbf{u}=\mathbf{a} \pm \mathbf{b} i$
- If the system has 3 variables instead of 2 , then we will have 3 fundamental solutions (but same format as described above)
* Then put solutions into form $\mathbf{x}=\mathbf{X c}$, where \mathbf{X} stores the fundamental solutions and \mathbf{c} is a column vector containing the constants
- Now to solve the nonhomogeneous we will have solutions of form $\mathbf{x}=\mathbf{X c}+\mathbf{x}_{p}$, just need to determine \mathbf{x}_{p} :
* Undetermined coefficients: we will follow very similar rules for test functions as we did previously with this method, then solve for the values of each vector
* Variation of parameters: the textbook shows a nice derivation of this formula, which is pretty similar to the previous derivation for our second order equations, and the result is that $\mathbf{x}_{p}=\mathbf{X} \int \mathbf{X}^{-1} \mathbf{g} d t$, where \mathbf{X}^{-1} is the inverse of $\mathbf{X}\left(\mathbf{X}^{-1} \mathbf{X}=\mathbf{X} \mathbf{X}^{-\mathbf{1}}=\mathbf{I}\right)$
- For a 2×2 matrix, we can calculate \mathbf{X}^{-1} directly: $\mathbf{X}^{-1}=\frac{1}{a d-b c}\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$, for

$$
\mathbf{X}=\left[\begin{array}{ll}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right]
$$

- Example problem 1 (Undetermined Coefficients): $\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}-7 \\ 5\end{array}\right]$

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
2 & 3 \\
-1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \\
& {\left[\begin{array}{cc}
2-r & 3 \\
-1 & -2-r
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\mathbf{0}} \\
& (2-r)(-2-r)-(-1)(3)=0 \\
& r^{2}-1=0 \rightarrow r= \pm 1 \\
& r=1 \text { : } \\
& {\left[\begin{array}{cc}
1 & 3 \\
-1 & -3
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\mathbf{0}} \\
& u_{1}+3 u_{2}=0 \\
& u_{2}=c_{1} \rightarrow u_{1}=-3 c_{1} \\
& -\rightarrow c_{1} e^{t}\left[\begin{array}{c}
-3 \\
1
\end{array}\right] \\
& r=-1 \text { : } \\
& {\left[\begin{array}{cc}
3 & 3 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=\mathbf{0}} \\
& u_{1}=-u_{2} \\
& u_{2}=c_{2} \rightarrow u_{1}=-c_{2} \\
& \rightarrow c_{2} e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right] \\
& \mathbf{x}_{p}=\left[\begin{array}{l}
\text { 「 } \\
b
\end{array}\right] \rightarrow \mathbf{x}_{p}{ }^{\prime}=\mathbf{0} \\
& \mathbf{0}=\left[\begin{array}{c}
2 a+3 b-7 \\
-a-2 b+5
\end{array}\right] \\
& -\begin{array}{l}
2 a+3 b=7
\end{array} \\
& a+2 b=5 \\
& b=3 \rightarrow a=-1 \\
& \begin{array}{c}
\mathbf{x}_{p}=\left[\begin{array}{c}
-1 \\
3
\end{array}\right] \\
-\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
3
\end{array}\right]
\end{array}
\end{aligned}
$$

- Example problem 2 (Variation of Parameters): $\frac{d}{d t}\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]+\left[\begin{array}{c}e^{t} \\ e^{-t}\end{array}\right]$

$$
\begin{aligned}
& {\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]_{h}=\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]} \\
& -\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
-0.5 e^{-t} & -0.5 e^{-t} \\
0.5 e^{t} & 1.5 e^{t}
\end{array}\right] \\
& \mathbf{x}_{p}=\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right] \int\left[\begin{array}{cc}
-0.5 e^{-t} & -0.5 e^{-t} \\
0.5 e^{t} & 1.5 e^{t}
\end{array}\right]\left[\begin{array}{c}
e^{t} \\
e^{-t}
\end{array}\right] d t \\
& =\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]\left[\begin{array}{c}
-0.5 t+0.25 e^{-2 t} \\
0.25 e^{2 t}+1.5 t
\end{array}\right]=\left[\begin{array}{c}
-3 e^{t}\left(-0.5 t+0.25 e^{-2 t}\right)-e^{-t}\left(0.25 e^{2 t}+1.5 t\right) \\
e^{t}\left(-0.5 t+0.25 e^{-2 t}\right)+e^{-t}\left(0.25 e^{2 t}+1.5 t\right)
\end{array}\right] \\
& -\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{cc}
-3 e^{t} & -e^{-t} \\
e^{t} & e^{-t}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]+\frac{1}{4}\left(2 t e^{t}\left[\begin{array}{c}
3 \\
-1
\end{array}\right]+e^{-t}\left[\begin{array}{c}
-3 \\
1
\end{array}\right]+e^{t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]+6 t e^{-t}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]\right)
\end{aligned}
$$

