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General Tips
» Make sure you know when you will take the final:
— Check http://www.math.ucsd.edu/~m3xiao/math20d/Announcements.html for timing and
details
— Not cumulative, so you need to really know the stuff from the past few weeks
* You don't want to lose points because you take an integral, derivative, Laplace transform, or partial
fraction decomposition incorrectly
— Include tables of common identities in your notes
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parts and then factor it out before doing any partial fraction decomposition.

— Remember: when we have a expression like we separate the exponential
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» Check your work!
— Whenever you get a solution to a differential equation, it is easy to confirm that your solution

is correct by plugging it back into the original equation
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Advanced Laplace Transforms
» See Midterm 2 Review for general discussion about Laplace transforms and a table (copied from
the textbook) of most common ones
* The only new things are convolutions and Dirac delta functions

« Convolutions: f ® g = j:f(t -7)g(t)dt, f®g=9® f

— Relation to Laplace transform: Z{f ® ¢} = F(s)G(s) and ¥ "H{F(s)G(s)} = f®¢

— So we can solve integro-differential equations by making sure the integral is in the format
above and then taking the Laplace transform of both sides
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— Relation to Laplace transform: £ {0(x —a)} = e™

— Remember: ¥ 71 {e‘”SF(s)} = f(x—a)Z(x—a)

« Dirac delta function: 6(x —a) = {

t
- Example Problem 1 (Convolutions): y(t) = te' + L ty(t — 1) dt
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- Example problem 2 (Dirac-delta function): y” = 6(t — 2), y(0) = 0, y'(0) = 0
—$2Y(s) = e

- Y(s) = 6_225 = 3—25[12]

Y= (-2t -2)

Series Solutions

* Because of Taylor's theorem, the power series f(x) = E ax(x — x¢)¥ can be used to solve any
k=0
linear differential equation
» Method of solution:
— First put equation in standard form: y” + P(x)y" + Q(x)y = g(x) (or equivalent for higher
derivatives of y)

— Find a point xy where P(x), Q(x), and g(x) are all defined and have a continuous derivative

— Sety = E ap(x — xo)k and calculate all needed derivatives of y using the power rule
k=0
— Find power series representations of P(x), Q(x), and g(x)
— Plug everything into the original equation and use algebraic techniques to combine all terms

into one summation: Z ca(x—x0)" =0
n=0
— Every constant c is a function of the constants a in the power series, and every value
¢, =0, n > 0 so we can solve for the values of a in our power series
* We see that our initial conditions give us y(xo) = ag, i’ (xo) = a1
- Example problem: y” +xy’ + 2y = 0, y(0) = 3, y'(0) = -2
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Systems of First-Order Differential Equations
d x1(t)
« We might have a system of equations like this: %x(t) = Ax(t) + g(t), where x(t) = | x,(t) | and
A is a square matrix with real (constant) values in all entries
— Remember, this is just a fancier way of writing a system of equations
* Method of solution:
— First solve homogeneous equation X’ = Ax
* Solutions will be of the form x = e"*u, where r is an eigenvalue of the system and u is a
corresponding eigenvector
- Eigenvalue equationis (A—-rI)u =0
- Take the determinant of A — rI and set equal to zero to solve for the eigenvalues

- Determinant of a 2x2 matrix [ a Z ]: ad — bc
c
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the straight lines indicate determinants of the 2x2 matrices

d e
8

e f
hoi

+C

‘ , where

- Distinct real eigenvalues: solution is x = cquqe” + couye’™
- Repeated eigenvalue: solution is x = ciue’* + cye’*[tu + v] where
(A-rI)v =u
- Imaginary eigenvalues: solution is
x = c1e®[a cos Bt — b sin Bt] + coe*[a sin Bt + b cos Bt], where the
eigenvalues are « + ffi and eigenvectors are u = a + bi
- If the system has 3 variables instead of 2, then we will have 3 fundamental
solutions (but same format as described above)
* Then put solutions into form x = Xc, where X stores the fundamental solutions and c is
a column vector containing the constants
— Now to solve the nonhomogeneous we will have solutions of form x = Xc + x,,, just need to
determine x,:
* Undetermined coefficients: we will follow very similar rules for test functions as we did
previously with this method, then solve for the values of each vector
* Variation of parameters: the textbook shows a nice derivation of this formula, which is

pretty similar to the previous derivation for our second order equations, and the result is

that x,, = XfX‘lg dt, where X1 is the inverse of X (X~ 1X = XX 1 = 1)
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- For a 2x2 matrix, we can calculate X! directly: X1 = l d b ] for
ad—-bc|l—c a
x [ a® b
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» Example problem 1 (Undetermined Coefficients): — 1 =[ 2 3 ] 1 + 7]
dt X7 -1 -2 X9 5




» Example problem 2 (Variation of Parameters): —
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