Separable Differential Equations

- Formula
$-y^{\prime}=\frac{a(x)}{b(y)}$
- Method of Solution
- First check if $y^{\prime}=0$, solve for y and see if this equation is a solution
- Then we can rearrange the equation to: $b(y) d y=a(x) d x$ and integrate
- Example
- Population $\mathrm{P}(\mathrm{t})$ can be described as $P^{\prime}=(k \cos t) P$. Find the solution if the initial population is 100 , and $\mathrm{k}=5$
* $\int \frac{1}{P} d P=\int(k \cos t) d t$
* $P=C e^{k \sin t}$
* $P=100 e^{5 \sin t}$

Linear First-Order Equations

- Formula
$-y^{\prime}+P(x) y=Q(x)$
- Method of Solution
- Calculate integrating factor $\mu(x)=e^{\int P(x) d x}$
$-y=\frac{\int \mu(x) Q(x) d x+C}{\mu(x)}$
- Example
- Solve $y^{\prime}+3 x^{2} y=x^{2}$ with initial condition $\mathrm{y}(0)=2$.
$-\mu(x)=e^{x^{3}}$
$-y=\frac{\int e^{x^{3}} x^{2} d x}{e^{x^{3}}} \rightarrow u=x^{3} \rightarrow d u / 3=x^{2} d x \rightarrow y=\frac{\int e^{u} d u}{3 e^{x^{3}}}=\frac{1}{3}+\frac{c}{3 e^{x^{3}}}$
$-2=\frac{1}{3}+\frac{c}{3 e^{0}}=\frac{1}{3}+\frac{c}{3} \rightarrow c=5$

Exact Equations

- Formula
$-M(x, y)+N(x, y) \frac{d y}{d x}=0$
- We must either show $\int M(x, y) d x=\int N(x, y) d y=F(x, y)$ or

$$
\frac{\partial}{\partial y} M(x, y)=\frac{\partial}{\partial x} N(x, y)=\frac{\partial^{2} F(x, y)}{\partial x \partial y}
$$

- Method of Solution
- Integrate M and N in terms of x and y , respectively, and solve for F .
- $F(x, y)+c=0$ is an implicit solution
- Example

$$
\begin{aligned}
& -M=(x+y)^{2} ; N^{\prime}=\left(2 x y+x^{2}+y^{2}\right) \\
& -\int M d x=\frac{(x+y)^{3}}{3}+g(y)=\frac{x^{3}}{3}+x^{2} y+x y^{2}+\frac{y^{3}}{3}+g(y) \\
& \quad \int N d y=x y^{2}+x^{2} y+\frac{y^{3}}{3}+h(x) \\
& -h(x)=\frac{x^{3}}{3}+c, g(y)=c \\
& -F(x, y)=\frac{(x+y)^{3}}{3}+c=0 \\
& -c=-\frac{8}{3}
\end{aligned}
$$

Special Integrating Factors

- Formula:
$-M(x, y)+N(x, y) y^{\prime}=0$
- We must either show:
* Case 1: $\frac{M_{y}-N_{x}}{N}$ is solely a function of x , or
* Case 2: $\frac{N_{x}-M_{y}}{M}$ is solely a function of y
- Method of solution:
- Multiply both sides of equation by integrating factor $\mu(x)=e^{\int \frac{M_{y}-N_{x}}{N} d x}$
(Case 1) or

$$
\mu(y)=e^{\int \frac{N_{x}-M_{y}}{M} d y} \text { (Case 2) }
$$

- The equation is now exact and we can solve it as described previously
- Example:
- Solve $x+\left(x^{2} y+4 y\right) y^{\prime}=0, y(4)=0$
$-M=x, N=x^{2} y+4 y \rightarrow M_{y}=0, N_{x}=2 x y$
$-\frac{M_{y}-N_{x}}{N}=\frac{-2 x}{\left(x^{2}+4\right)}, \frac{N_{x}-M_{y}}{M}=2 y$
- Multiply by $\mu(y)=e^{y^{2}}$ on both sides, so new equation is $x e^{y^{2}}+\left(x^{2} y+4 y\right) e^{y^{2}} y^{\prime}=0$
$-M_{\text {exact }}=x e^{y^{2}}, N_{\text {exact }}=\left(x^{2}+4\right) y e^{y^{2}}$

$$
\begin{aligned}
& \int x e^{y^{2}} d x=\frac{x^{2} e^{y^{2}}}{2}+g(y) \\
- & \int\left(x^{2}+4\right) y e^{y^{2}} d y \rightarrow u=y^{2} \rightarrow \frac{d u}{2}=y d y \rightarrow \int\left(x^{2}+4\right) e^{u} d u= \\
& \left(x^{2}+4\right) \frac{e^{y^{2}}}{2}+h(x)=\frac{x^{2} e^{y^{2}}}{2}+2 e^{y^{2}}+h(x) \\
- & g(y)=2 e^{y^{2}}+c, h(x)=c \\
- & F(x, y)=\frac{x^{2} e^{y^{2}}}{2}+2 e^{y^{2}}+c=0 \\
- & c=-10
\end{aligned}
$$

Homogeneous Linear Second-Order ODEs with Constant Coefficients

- Equation:

- Method of solution:
- Assuming that this equation will have a solution of the form $y=e^{m x}$
- Solve the characteristic equation: $a m^{2}+b m+c=0$ using quadratic formula:

$$
m=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Three cases for our solution:
* Two real roots: general solution is $y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}$
* One real root: general solution is $y=c_{1} e^{m x}+c_{2} x e^{m x}$
* Imaginary roots: general solution is $y=e^{\alpha x}\left[c_{1} \cos \beta x+c_{2} \sin \beta x\right]$, where $m=\alpha \pm \beta i$
- Example:
- Solve $3 y^{\prime \prime}+2 y^{\prime}+y=0, y(0)=5, y^{\prime}(0)=1$
$-3 m^{2}+2 m+1=0 \rightarrow m=-\frac{1}{3} \pm i \frac{\sqrt{2}}{3}$
$-y=e^{-x / 3}\left[c_{1} \cos \left(\frac{\sqrt{2}}{3} x\right)+c_{2} \sin \left(\frac{\sqrt{2}}{3} x\right)\right]$
- After taking derivative and substituting for inital conditions we get $c_{1}=5, c_{2}=4 \sqrt{2}$

