Spring 2021 Math 20D Lecture B Homework \#1
 Due Friday 11:59pm, April 9th

Submit this homework through Gradescope, check the course website on how to submit homework.
Topics covered: section 1.2, 2.2-2.4

1. Verify that the given relation is an implicit solution to the given differential equation.

$$
y-\ln y=x^{2}+1, \quad \frac{d y}{d x}=\frac{2 x y}{y-1} .
$$

2. Verify that the function $\phi(x)=c_{1} e^{x}+c_{2} e^{-2 x}$ is a solution to the given equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0
$$

for any choice of the constants c_{1} and c_{2}. Determine c_{1} and c_{2} so that the following initial conditions is satisfied:

$$
y(1)=1, \quad y^{\prime}(1)=0
$$

3. Solve the initial value problem

$$
\sqrt{y} d x+(1+x) d y=0, \quad y(0)=1
$$

4. Solve the initial value problem

$$
y^{\prime}=x^{3}(1+y), \quad y(0)=3
$$

5. According to Newton's law of cooling, if an object at temperature T is immersed in a medium having the constant temperature M, then the rate of change of T is proportional to the difference of temperature $M-T$. This gives the differential equation

$$
\frac{d T}{d t}=k(M-T)
$$

(a) Solve the differential equation for T.
(b) A thermometer reading $100^{\circ} \mathrm{F}$ is placed in a medium having a constant temperature of $70^{\circ} \mathrm{F}$. After 6 min , the thermometer reads $80^{\circ} \mathrm{F}$. What is the reading after 20 min? You can leave your answer unsimplified.
6. Solve the initial value problem

$$
\frac{d y}{d x}+\frac{3 y}{x}+2=3 x, \quad y(1)=1
$$

7. Solve the initial value problem

$$
(\sin x) \frac{d y}{d x}+y \cos x=x \sin x, \quad y(\pi / 2)=2
$$

8. Solve the initial value problem

$$
\left(y e^{x y}-1 / y\right) d x+\left(x e^{x y}+x / y^{2}\right) d y=0, \quad y(1)=1
$$

9. Consider the differential equation and initial condition

$$
\alpha t x+\left(3 t^{2}+2 \cos (x) \sin (x)\right) x^{\prime}=0, \quad x(1)=\pi / 4
$$

(a) Find a value of the parameter α such that the equation is exact.
(b) For this value of α, find the solution of the initial value problem in implicit form.

Note: Due to the number of students in this class, a subset of the questions will be used to grade this assignment. This subset will be determined after all of the assignments have been submitted.

