Spring 2021 Math 20D Lecture B Homework \#1

Topics covered: section 1.2, 2.2-2.4

1. Verify that the given relation is an implicit solution to the given differential equation.

$$
y-\ln y=x^{2}+1, \quad \frac{d y}{d x}=\frac{2 x y}{y-1}
$$

Answer. $y^{\prime}-\frac{y^{\prime}}{y}=2 x$, thus $y^{\prime}=2 x /(1-1 / y)=2 x y /(y-1)$.
2. Verify that the function $\phi(x)=c_{1} e^{x}+c_{2} e^{-2 x}$ is a solution to the given equation

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}-2 y=0
$$

for any choice of the constants c_{1} and c_{2}. Determine c_{1} and c_{2} so that the following initial conditions is satisfied:

$$
y(1)=1, \quad y^{\prime}(1)=0
$$

Answer. Verification is omitted. $c_{1}=\frac{2}{3 e}$ and $c_{2}=\frac{e^{2}}{3}$.
3. Solve the initial value problem

$$
\sqrt{y} d x+(1+x) d y=0, \quad y(0)=1
$$

Answer. Separating variables we get $\frac{1}{\sqrt{y}} d y=-\frac{1}{1+x} d x$, integrating both sides we get $2 y^{\frac{1}{2}}=-\ln |1+x|+C$. Plug in $y(0)=1$, thus $C=2$. The solution is

$$
y=\left(\frac{-\ln |1+x|+2}{2}\right)^{2} .
$$

4. Solve the initial value problem

$$
y^{\prime}=x^{3}(1+y), \quad y(0)=3
$$

Answer. Separating variables we get $\frac{1}{1+y} d y=x^{3} d x$, integrating both sides we get $\ln |1+y|=\frac{x^{4}}{4}+C$. Thus $|1+y|=e^{\frac{x^{4}}{4}+C}$ and $1+y= \pm e^{\frac{x^{4}}{4}} \cdot e^{C}$. Let $C_{1}= \pm e^{C}$, the general solution can be written as $y=-1+C_{1} e^{\frac{x^{4}}{4}}$. Plug in initial condition $y(0)=3$, we get $C_{1}=4$, thus the solution to the IVP is $y=-1+4 e^{\frac{x^{4}}{4}}$.
5. According to Newton's law of cooling, if an object at temperature T is immersed in a medium having the constant temperature M, then the rate of change of T is proportional to the difference of temperature $M-T$. This gives the differential equation

$$
\frac{d T}{d t}=k(M-T)
$$

(a) Solve the differential equation for T.
(b) A thermometer reading $100^{\circ} \mathrm{F}$ is placed in a medium having a constant temperature of $70^{\circ} \mathrm{F}$. After 6 min , the thermometer reads $80^{\circ} \mathrm{F}$. What is the reading after 20 min ?

Answer.

(a) Separating variables $\frac{1}{M-T} d T=k d t$, integrating we get $-\ln |M-T|=k t+C$, thus $|M-T|=e^{-k t-C}$ and $M-T= \pm e^{-k t-C}$. Let $C_{1}= \pm e^{-C}$, the general solution can be written as $T=M-C_{1} e^{-k t}$.
(b) We know that $M=70$. From $T(0)=100$ we get $C_{1}=-30$. From $T(6)=80$ we get $k=\frac{\ln 3}{6}$. Thus $T(t)=70+30 e^{-\frac{\ln 3}{6} t}$, thus $T(20)=70+30 e^{-\frac{10 \ln 3}{3}}$.
6. Solve the initial value problem

$$
\frac{d y}{d x}+\frac{3 y}{x}+2=3 x, \quad y(1)=1 .
$$

Answer. The linear equation in standard form is $y^{\prime}+\frac{3}{x} y=3 x-2$, thus $\mu=e^{\int \frac{3}{x} d x}=x^{3}$. Multiply μ to the equation, we get $x^{3} y^{\prime}+3 x^{2} y=x^{3}(3 x-2)$. Thus $D_{x}\left[x^{3} y\right]=x^{3}(3 x-2)$. Integrating we get $x^{3} y=\int x^{3}(3 x-2) d x=\frac{3 x^{5}}{5}-\frac{x^{4}}{2}+C$. Thus the general solution is $y=\frac{\frac{3 x^{5}}{5}-\frac{x^{4}}{2}+C}{x^{3}}=\frac{3 x^{2}}{5}-\frac{x}{2}+\frac{C}{x^{3}}$. Plug in the initial condition $y(1)=1$, we get $C=\frac{9}{10}$.
7. Solve the initial value problem

$$
(\sin x) \frac{d y}{d x}+y \cos x=x \sin x, \quad y(\pi / 2)=2 .
$$

Answer. Dividing by $\sin x$ and restricting the domain to $x \in[\pi / 2, \pi)$ so that $\sin x \neq 0$, the linear equation in standard form is $y^{\prime}+(\cot x) y=x$, thus $\mu=e^{\int(\cot x) d x}=e^{\ln (\sin x)}=$ $\sin x$. Multiply μ on both sides of the equation, we get $(\sin x) y^{\prime}+y \cos x=x \sin x$. (Note: we do not need the absolute value signs around $\sin x$ in μ because $\sin x>0$ over our specified domain). Thus $D_{x}[(\sin x) y]=x \sin x$, integrating both sides, we get $(\sin x) y=-x \cos x+\sin x+C$. Thus $y=\frac{-x \cos x+\sin x+C}{\sin x}$. Plug in initial condition, we get $C=1$.
Alternate solution. Notice that $\left[(\sin x) \frac{d y}{d x}+y \cos x\right]=D_{x}[(\sin x) y]$, so we can integrate both sides and get $(\sin x) y=-x \cos x+\sin x+C$. Dividing by $\sin x$ and restricting the domain to $x \in[\pi / 2, \pi)$ so that $\sin x \neq 0$, we get $y=\frac{-x \cos x+\sin x+C}{\sin x}$. Plug in initial condition, we get $C=1$.
8. Solve the initial value problem

$$
\left(y e^{x y}-1 / y\right) d x+\left(x e^{x y}+x / y^{2}\right) d y=0, \quad y(1)=1
$$

Answer. Let $M=y e^{x y}-1 / y$ and $N=x e^{x y}+x / y^{2}$. We have $M_{y}=e^{x y}+x y e^{x y}+\frac{1}{y^{2}}$ and $N_{y}=e^{x y}+x y e^{x y}+\frac{1}{y^{2}}$, thus $M_{y}=N_{x}$, it is an exact equation. $F(x, y)=\int M d x=$ $e^{x y}-\frac{x}{y}+g(y)$. Moreover, $F_{y}=x e^{x y}+\frac{x}{y^{2}}+g^{\prime}(y)=N=x e^{x y}+x / y^{2}$. Thus $g^{\prime}(y)=0$ and we can choose $g(y)=0$. The general solution is $F(x, y)=e^{x y}-\frac{x}{y}=C$. Plug in initial condition, we get $C=F(1,1)=e-1$.
9. Consider the differential equation and initial condition

$$
\alpha t x+\left(3 t^{2}+2 \cos (x) \sin (x)\right) x^{\prime}=0, \quad x(1)=\pi / 4
$$

(a) Find a value of the parameter α such that the equation is exact.
(b) For this value of α, find the solution of the initial value problem in implicit form.

Answer.

(a) The equation is

$$
\alpha t x d t+\left(3 t^{2}+2 \cos (x) \sin (x)\right) d x=0
$$

By calculating M_{x} and N_{t}, we get:

$$
M_{x}=\alpha t, \quad N_{t}=6 t
$$

For the equation to be exact, we need $M_{x}=N_{t}$, that is, $\alpha=6$.
(b) Since the equation with $\alpha=6$ is exact, we can find a function $F(t, x)$ so that $F_{t}=M, F_{x}=N$. i.e.

$$
\begin{aligned}
& F_{t}=6 t x \\
& F_{x}=3 t^{2}+2 \cos (x) \sin (x)
\end{aligned}
$$

Integrating the first equation, we obtain

$$
F(t, x)=3 t^{2} x+h(x)
$$

Setting $F_{x}=N$ gives

$$
F_{x}=3 t^{2}+h^{\prime}(x)=3 t^{2}+2 \cos (x) \sin (x)
$$

Thus $h^{\prime}(x)=2 \cos (x) \sin (x)$, and $h(x)=\sin ^{2}(x)+C$. It is enough to choose any one of the $h(x)$, and we choose $h(x)=\sin ^{2}(x)$. Therefore the general solution of the exact equation is given implicitly by $F(t, x)=3 t^{2} x+\sin ^{2}(x)=c$. To determine the constant c, we substitute the initial condition $x(1)=\pi / 4$. So the solution to the IVP is $3 t^{2} x+\sin ^{2}(x)=1 / 2+3 \pi / 4$.

