Spring 2021 Math 20D Lecture B Homework \#3

1. Find a particular solution to the differential equation

$$
y^{\prime \prime}+2 y^{\prime}-y=10+x
$$

Solution: One makes the "guess" that y_{p} has the form $y_{p}=A x+B$ for suitable constants A and B. Note that $y_{p}^{\prime}=A, y_{p}^{\prime \prime}=0$, so that

$$
y_{p}^{\prime \prime}+2 y_{p}^{\prime}-y_{p}=0+2 A-A x-B=x-10 .
$$

This yields the equations

$$
-A x=x, 2 A-B=10 \Longrightarrow A=-1, B=-12
$$

Thus a particular solution is

$$
y_{p}=-x-12
$$

2. Find a particular solution to the differential equation

$$
2 z^{\prime \prime}+z=9 e^{2 t}
$$

Solution: The characteristic equation corresponding to the homogeneous equation $2 z^{\prime \prime}+z=0$ is $2 \lambda^{2}+\lambda=0$, which has solutions

$$
\lambda_{1,2}=\frac{-0 \pm \sqrt{0^{2}-4 * 2}}{4}=\frac{ \pm 2 i \sqrt{2}}{4}= \pm \frac{i}{\sqrt{2}} .
$$

These roots correspond to a homogeneous solution of

$$
z_{h}=c_{1} \cos \left(\frac{t}{\sqrt{2}}\right)+c_{2} \sin \left(\frac{t}{\sqrt{2}}\right)
$$

Since this solution doesn't involve $e^{2 t}$, one makes the guess that $z_{p}=A e^{2 t}$ for an undetermined constant A. Noting that $z_{p}^{\prime}=2 A e^{2 t}$ and $z_{p}^{\prime \prime}=4 A e^{2 t}$, one arrives at

$$
2 z_{p}^{\prime \prime}+z_{p}=8 A e^{2 t}+A e^{2 t}=9 e^{2 t} \Longrightarrow A=1
$$

Thus a particular solution is $z_{p}=e^{2 t}$.
3. Find a particular solution to the differential equation

$$
4 y^{\prime \prime}+11 y^{\prime}-3 y=-2 x e^{-3 x}
$$

Solution: The characteristic equation corresponding to the homogeneous equation $4 y^{\prime \prime}+11 y^{\prime}-3 y=0$ is $4 \lambda^{2}+11 \lambda-3=0$, which has solutions

$$
\lambda_{1,2}=\frac{-11 \pm \sqrt{(11)^{2}-4 *(-3) * 4}}{4 * 2}=-3, \frac{1}{4} .
$$

Now, one guesses that a particular solution has the form $y_{p}=x^{s}(A x+b) e^{-3 x}$, and since -3 is a nonrepeated root of the auxiliary equation, it is the case that $s=1$ so that $y_{p}=\left(A x^{2}+B x\right) e^{-3 x}$. Further,

$$
\begin{gathered}
y_{p}^{\prime}=2 A x e^{-3 x}-3 A x^{2} e^{-3 x}+B e^{-3 x}-3 B x e^{-3 x} \\
y_{p}^{\prime \prime}=2 A e^{-3 x}-6 A x e^{-3 x}-6 A x e^{-3 x}+9 A x^{2} e^{-3 x}-3 B e^{-3 x}-3 B e^{-3 x}+9 B x e^{-3 x} \\
=e^{-3 x}\left(-3 A x^{2}+2 A x-3 B x+B\right) \\
=e^{-3 x}\left(9 A x^{2}-12 A x+2 A+9 B x-6 B\right)
\end{gathered}
$$

Now, substituting this information into the original differential equation, one arrives at

$$
\begin{gathered}
4 y_{p}^{\prime \prime}+11 y_{p}^{\prime}-3 y_{p} \\
=e^{-3 x}\left[4\left(9 A x^{2}-12 A x+2 A+9 B x-6 B\right)\right. \\
\left.+11\left(-3 A x^{2}+2 A x-3 B x+B\right)-3\left(A x^{2}+B x\right)\right] \\
=e^{-3 x}[-26 A x+8 A-13 B]=-2 x e^{-3 x} \\
\Longrightarrow 26 A=2 \Longrightarrow A=\frac{1}{13} \\
\Longrightarrow \frac{8}{13}-13 B=0 \Longrightarrow B=\frac{8}{13^{2}}
\end{gathered}
$$

So a particular solution to the given differential equation is

$$
y_{p}=\left(\frac{1}{13} x^{2}+\frac{8}{169} x\right) e^{-3 x}
$$

4. Find a particular solution to the differential equation

$$
y^{\prime \prime}+4 y=8 \sin (2 t)
$$

Solution: The characteristic equation corresponding to the homogeneous problem has roots

$$
\lambda_{1,2}=\frac{ \pm \sqrt{-16}}{2}= \pm 2 i
$$

Note that these roots correspond to the general solution

$$
y_{g}=c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

As such, one guesses that a particular solution has the form $y_{p}=t^{s}(A \cos (2 t)+$ $B \sin (2 t)$), and since $\sin (2 t)$ appears in the general solution, $s=1$ so that

$$
y_{p}=A t \cos (2 t)+B t \sin (2 t) .
$$

Taking derivatives yields

$$
\begin{gathered}
y_{p}^{\prime}=A \cos (2 t)-2 A t \sin (2 t)+B \sin (2 t)+2 B t \cos (2 t) \\
y_{p}^{\prime \prime}=-2 A \sin (2 t)-2 A \sin (2 t)-4 A t \cos (2 t)+2 B \cos (2 t)+2 B \cos (2 t)-4 B t \sin (2 t) \\
=\sin (2 t)(-4 A-4 B t)+\cos (2 t)(-4 A t+4 B)
\end{gathered}
$$

Plugging these back into the differential equation yields

$$
\begin{gathered}
y_{p}^{\prime \prime}+4 y_{p}=\sin (2 t)(-4 A-4 B t)+\cos (2 t)(-4 A t+4 B)+4[A t \cos (2 t)+B t \sin (2 t)] \\
=\sin (2 t)(-4 A-4 B t+4 B t)+\cos (2 t)(-4 A t+4 B+4 A t)=8 \sin (2 t)
\end{gathered}
$$

Grouping terms produces the system of equations

$$
-4 A=8,4 B=0 \Longrightarrow A=-2, B=0
$$

So a particular solution to this differential equation is

$$
y_{p}=-2 t \cos (2 t)
$$

