Spring 2021 Math 20D Lecture B Homework \#4

Due Sunday, 11:59pm, May 2nd

Submit this homework through Gradescope.
Topics covered: section 4.6, 4.7, 7.2

1. Find the general solution to the differential equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=t^{-3} e^{3 t}
$$

2. Find the general solution to the differential equation for $x>0$.

$$
\frac{d^{2} y}{d x^{2}}+\frac{6}{x} \frac{d y}{d x}+\frac{4}{x^{2}} y=0
$$

3. Solve the initial value problem for the Cauchy-Euler equation.

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}+5 y=0, \quad y(1)=-1, \quad y^{\prime}(1)=4
$$

4. Devise a modification of the method for Cauchy-Euler equation to find two linearly independent solutions to the given equation.

$$
(x+1)^{2} y^{\prime \prime}+10(x+1) y^{\prime}+14 y=0, \quad x>-1
$$

(Hint: Try $\left.y_{p}=(x+1)^{r}\right)$.
5. Find the general solution to the non-homogeneous Cauchy-Euler equation using variation of parameters.

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+y=\frac{1}{x}
$$

6. Let

$$
f(t)= \begin{cases}1-t, & 0 \leq t<1 \\ 0, & t \geq 1\end{cases}
$$

Use the definition of Laplace transform to find $\mathscr{L}\{f(t)\}$.

Note: Due to the number of students in this class, a subset of the questions will be used to grade this assignment. This subset will be determined after all of the assignments have been submitted.

