Spring 2021 Math 20D Lecture B Homework \#6

Due Sunday, 11:59pm, May 16th
Submit this homework through Gradescope.
Topics covered: section 7.6, 7.7/7.8

1. Express the given function using window and step functions and then compute its Laplace transform.

$$
g(t)= \begin{cases}0, & t \in[0,2), \\ t+1, & t \in[2, \infty) .\end{cases}
$$

SOLUTION: We can see that the function is zero for every value $t<2$ and $t+1$ for every other value of t. Therefore, $g(t)=(t+1) u(t-2)$. We use the identity $\mathscr{L}\{f(t) u(t-a)\}=e^{-a s} \mathscr{L}\{f(t+a)\}$ to take the Laplace transform of this function: $\mathscr{L}\{g(t)\}=e^{-2 s} \mathscr{L}\{t+3\}=e^{-2 s}\left[\frac{1}{s^{2}}+\frac{3}{s}\right]$.
2. Solve the given initial value problem using the method of Laplace transforms.

$$
y^{\prime \prime}+y=u(t-3), \quad y(0)=0, y^{\prime}(0)=1 .
$$

SOLUTION: We take the Laplace transform of both sides, yielding $s^{2} Y(s)-1+Y(s)=$ $\frac{e^{-3 s}}{s}$, where $Y(s)=\mathscr{L}\{y(t)\}$. Solving for $Y(s)$, we get $Y(s)=e^{-3 s}\left[\frac{1}{s\left(s^{2}+1\right)}\right]+\frac{1}{s^{2}+1}$. We will use the partial fraction decomposition: $\frac{1}{s\left(s^{2}+1\right)}=\frac{1}{s}-\frac{s}{s^{2}+1}$. Taking the inverse Laplace transform,

$$
y(t)=\mathscr{L}^{-1}\left\{\frac{1}{s^{2}+1}\right\}+\mathscr{L}^{-1}\left\{\frac{e^{-3 s}}{s}\right\}-\mathscr{L}^{-1}\left\{e^{-3 s}\left(\frac{s}{s^{2}+1}\right)\right\}=\sin t+u(t-3)[1-\cos (t-3)]
$$

3. Use the convolution theorem to compute

$$
\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+4\right)^{2}}\right\} .
$$

SOLUTION: By convolution theorem,

$$
\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+4\right)^{2}}\right\}=\frac{1}{4} \mathscr{L}^{-1}\left\{\frac{2}{s^{2}+4} \cdot \frac{2}{s^{2}+4}\right\}=\frac{1}{4} \sin (2 t) * \sin (2 t) .
$$

The convolution is

$$
\begin{aligned}
\sin (2 t) * \sin (2 t) & =\int_{0}^{t} \sin (2(t-\tau)) \sin (2 \tau) d \tau \\
& =\int_{0}^{t} \frac{1}{2}[\cos (4 \tau-2 t)-\cos (2 t)] d \tau \\
& =\left.\frac{1}{2}\left[\frac{1}{4} \sin (4 \tau-2 t)-\cos (2 t) \tau\right]\right|_{\tau=0} ^{t} \\
& =\frac{1}{2}\left[\frac{1}{2} \sin (2 t)-t \cos (2 t)\right] \\
& =\frac{1}{4} \sin (2 t)-\frac{1}{2} t \cos (2 t)
\end{aligned}
$$

The second equality uses the identity that $\sin (A) \sin (B)=\frac{1}{2}[\cos (B-A)-\cos (B+A)]$. Thus

$$
\mathscr{L}^{-1}\left\{\frac{1}{\left(s^{2}+4\right)^{2}}\right\}=\frac{1}{16} \sin (2 t)-\frac{1}{8} t \cos (2 t) .
$$

4. Solve the integro-differential equation for $y(t)$:

$$
y^{\prime}(t)-2 \int_{0}^{t} e^{t-\tau} y(\tau) d \tau=t, \quad y(0)=2
$$

SOLUTION: First, we recognize that $\int_{0}^{t} e^{t-\tau} y(\tau) d \tau=e^{t} * y(t)$. Taking Laplace transform of both sides, we get

$$
\begin{gathered}
s Y(s)-y(0)-2 \mathscr{L}\left\{e^{t}\right\} Y(s)=\frac{1}{s^{2}} \\
\Rightarrow s Y(s)-2-\frac{2 Y(s)}{s-1}=\frac{1}{s^{2}} \\
\Rightarrow Y(s)=\frac{2 s^{3}-2 s^{2}+s-1}{s^{2}(s+1)(s-2)}
\end{gathered}
$$

Performing partial fraction decomposition, we get $Y(s)=\left(-\frac{3}{4}\right) \frac{1}{s}+\left(\frac{1}{2}\right) \frac{1}{s^{2}}+\left(\frac{3}{4}\right) \frac{1}{s-2}+$ (2) $\frac{1}{s+1}$ and therefore $y(t)=-\frac{3}{4}+\frac{t}{2}+\frac{3}{4} e^{2 t}+2 e^{-t}$.

