# Spring 2021 Math 20D Lecture B Homework \#7 

Due Sunday, 11:59pm, May 23th

Submit this homework through Gradescope.
Topics covered: section 7.9, 8.2

1. Find the solution of the given initial value problem:

$$
y^{\prime \prime}+2 y^{\prime}+2 y=\delta(t-\pi), \quad y(0)=1, y^{\prime}(0)=0 .
$$

Answer. Taking Laplace transform, we get

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+2[s Y(s)-y(0)]+2 Y(s)=e^{-\pi s}, \\
\Rightarrow Y(s)=\frac{s+2+e^{-\pi s}}{s^{2}+2 s+2}=\frac{s+1}{(s+1)^{2}+1}+\frac{1}{(s+1)^{2}+1}+\frac{e^{-\pi s}}{(s+1)^{2}+1} .
\end{gathered}
$$

Let $F(s)=\frac{1}{(s+1)^{2}+1}$, then $f(t)=\mathscr{L}^{-1}\{F(s)\}=e^{-t} \sin (t)$, thus

$$
\begin{aligned}
y(t) & =e^{-t} \cos (t)+e^{-t} \sin (t)+f(t-\pi) u(t-\pi) \\
& =e^{-t} \cos (t)+e^{-t} \sin (t)+e^{-(t-\pi)} \sin (t-\pi) u(t-\pi) .
\end{aligned}
$$

2. Find the solution of the given initial value problem:

$$
y^{\prime \prime}+4 y=\delta(t-\pi)-\delta(t-2 \pi), \quad y(0)=0, y^{\prime}(0)=0 .
$$

Answer. Taking Laplace transform, we get

$$
\begin{gathered}
s^{2} Y(s)-s y(0)-y^{\prime}(0)+4 Y(s)=e^{-\pi s}-e^{-2 \pi s}, \\
\Rightarrow Y(s)=\frac{e^{-\pi s}-e^{-2 \pi s}}{s^{2}+4}
\end{gathered}
$$

Let $F(s)=\frac{1}{s^{2}+4}$, then $f(t)=\mathscr{L}^{-1}\{F(s)\}=\frac{1}{2} \sin (2 t)$, thus

$$
\begin{aligned}
y(t) & =f(t-\pi) u(t-\pi)-f(t-2 \pi) u(t-2 \pi) \\
& =\frac{1}{2} \sin 2(t-\pi) u(t-\pi)-\frac{1}{2} \sin 2(t-2 \pi) u(t-2 \pi) \\
& =\frac{1}{2} \sin (2 t) u(t-\pi)-\frac{1}{2} \sin (2 t) u(t-2 \pi)
\end{aligned}
$$

The last equality is using the fact that $\sin (x)$ is $2 \pi$ periodic.
3. Determine the radius of convergence of the given power series:

$$
\sum_{n=1}^{\infty} \frac{(2 x+1)^{n}}{n^{2}}
$$

Answer. Write the power series in the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ we get

$$
\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}}\left(x+\frac{1}{2}\right)^{n}
$$

Thus $a_{n}=\frac{2^{n}}{n^{2}}$. Using the ratio test

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=\lim _{n \rightarrow \infty} \frac{2^{n}(n+1)^{2}}{n^{2} 2^{n+1}}=\lim _{n \rightarrow \infty} \frac{(n+1)^{2}}{2 n^{2}}=\frac{1}{2} .
$$

So the radius of convergence is $\frac{1}{2}$.

