Spring 2021 Math 20D Lecture B Homework \#9

Due Sunday, 11:59pm, June 7th

Submit this homework through Gradescope.
Topics covered: section 9.4, 9.5, 9.6

1. Consider $y^{\prime \prime \prime}-2 y^{\prime \prime}+y=\sin (t)$, rewrite the given scalar equation as a first-order system. Express the system in the matrix form $\mathbf{x}^{\prime}=A \mathbf{x}+\mathbf{g}$.
Answer. Let $x_{1}=y, x_{2}=y^{\prime}$ and $x_{3}=y^{\prime \prime}$, thus

$$
x_{1}^{\prime}=y^{\prime}=x_{2}, \quad x_{2}^{\prime}=y^{\prime \prime}=x_{3}, \quad x_{3}^{\prime}=y^{\prime \prime \prime}=2 x_{3}-x_{1}+\sin (t) .
$$

In matrix form this is

$$
\left(\begin{array}{l}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
x_{3}^{\prime}
\end{array}\right)=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 0 & 2
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)+\left(\begin{array}{c}
0 \\
0 \\
\sin (t)
\end{array}\right)
$$

2. Solve the initial value problem.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{3}{2}
$$

Answer. Let

$$
A=\left(\begin{array}{ll}
1 & 2 \\
3 & 2
\end{array}\right)
$$

The characteristic equation of A is:

$$
\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}
1-r & 2 \\
3 & 2-r
\end{array}\right)=(1-r)(2-r)-6=0
$$

which is $r^{2}-3 r-4=(r+1)(r-4)=0$. So the eigenvalues of A are $r_{1}=-1, r_{2}=4$. For $r_{1}=-1$, suppose \mathbf{v} is an eigenvector, then:

$$
\left(A-r_{1} I\right) \mathbf{v}=\mathbf{0}
$$

which is

$$
\left(\begin{array}{ll}
2 & 2 \\
3 & 3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

We can take $\mathbf{v}=\binom{1}{-1}$.

For $r_{2}=4$, suppose \mathbf{v} is an eigenvector, then:

$$
\left(A-r_{2} I\right) \mathbf{v}=\mathbf{0}
$$

which is

$$
\left(\begin{array}{cc}
-3 & 2 \\
3 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

We can take $\mathbf{v}=\binom{1}{3 / 2}$.
The corresponding eigensolutions are:

$$
\mathbf{x}_{1}(t)=\binom{1}{-1} e^{-t}, \quad \mathbf{x}_{2}(t)=\binom{1}{3 / 2} e^{4 t}
$$

So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{-1} e^{-t}+c_{2}\binom{1}{3 / 2} e^{4 t}
$$

When $t=0$, we have $\mathbf{x}(0)=\binom{3}{2}$ solve for the initial conditions, we will get $c_{1}=$ $1, c_{2}=2$. Therefore the solution to the initial value problem is

$$
\mathbf{x}(t)=\binom{1}{-1} e^{-t}+2\binom{1}{3 / 2} e^{4 t}
$$

3. Solve the initial value problem.

$$
\mathbf{x}^{\prime}=\left(\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right) \mathbf{x}, \quad \mathbf{x}(0)=\binom{-10}{-6}
$$

Answer. Let

$$
A=\left(\begin{array}{cc}
6 & -3 \\
2 & 1
\end{array}\right)
$$

The characteristic equation of A is:

$$
\operatorname{det}(A-r I)=\operatorname{det}\left(\begin{array}{cc}
6-r & -3 \\
2 & 1-r
\end{array}\right)=(6-r)(1-r)+6=0
$$

which is $r^{2}-7 r+12=(r-3)(r-4)=0$. So the eigenvalues of A are $r_{1}=3, r_{2}=4$.
For $r_{1}=3$, suppose \mathbf{v} is an eigenvector, then:

$$
\left(A-r_{1} I\right) \mathbf{v}=\mathbf{0}
$$

which is

$$
\left(\begin{array}{ll}
3 & -3 \\
2 & -2
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

We can take $\mathbf{v}=\binom{1}{1}$.
For $r_{2}=4$, suppose \mathbf{v} is an eigenvector, then:

$$
\left(A-r_{2} I\right) \mathbf{v}=\mathbf{0}
$$

which is

$$
\left(\begin{array}{ll}
2 & -3 \\
2 & -3
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{0}{0}
$$

We choose $\mathbf{v}=\binom{1}{2 / 3}$
The corresponding solutions are:

$$
\mathbf{x}_{1}(t)=\binom{1}{1} e^{3 t}, \quad \mathbf{x}_{2}(t)=\binom{1}{2 / 3} e^{4 t}
$$

So the general solution is

$$
\mathbf{x}(t)=c_{1}\binom{1}{1} e^{3 t}+c_{2}\binom{1}{2 / 3} e^{4 t}
$$

When $t=0$, we have $\mathbf{x}(0)=\binom{-10}{-6}$, solve c_{1}, c_{2} for the initial conditions, we will get $c_{1}=2, c_{2}=-12$. Therefore the solution to the initial value problem is

$$
\mathbf{x}(t)=2\binom{1}{1} e^{3 t}-12\binom{1}{2 / 3} e^{4 t}
$$

4. Find the general solution of the differential equation:

$$
\mathbf{x}^{\prime}=\left(\begin{array}{ll}
2 & -1 \\
3 & -2
\end{array}\right) \mathbf{x}+\binom{e^{2 t}}{1}
$$

Answer. Calculating the eigenvalues and eigenvectors for $\left(\begin{array}{ll}2 & -1 \\ 3 & -2\end{array}\right)$ and the two eigensolutions, we will get a fundamental matrix for the corresponding homogeneous linear system:

$$
M(t)=\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)
$$

Its inverse is

$$
M(t)^{-1}=\frac{1}{2}\left(\begin{array}{cc}
3 e^{-t} & -e^{-t} \\
-e^{t} & e^{t}
\end{array}\right)
$$

The integral

$$
\int M(t)^{-1}\binom{e^{2 t}}{1} d t=\frac{1}{2} \int\binom{3 e^{t}-e^{-t}}{-e^{3 t}+e^{t}} d t=\frac{1}{2}\binom{3 e^{t}+e^{-t}}{-e^{3 t} / 3+e^{t}}
$$

By variation of parameters, we know the general solution for the non-homogeneous equation is:

$$
M(t)\binom{c_{1}}{c_{2}}+M(t) \int M(t)^{-1}\binom{e^{2 t}}{1} d t
$$

Which is equal to:

$$
\left(\begin{array}{cc}
e^{t} & e^{-t} \\
e^{t} & 3 e^{-t}
\end{array}\right)\binom{c_{1}}{c_{2}}+\binom{4 e^{2 t} / 3+1}{e^{2 t}+2}
$$

where c_{1} and c_{2} are arbitrary constants.

