Math 220A Midterm Solutions

1. (a) (5 points) Let $u(x, y)=x^{3}-3 x y^{2}-x-y$ defined on \mathbb{C}. Is u harmonic on \mathbb{C} ? Justify your answer.

Solution: $\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}-1$, so $\frac{\partial^{2} u}{\partial x^{2}}=6 x$. Meanwhile, $\frac{\partial u}{\partial y}=-6 x y-1$, and thus $\frac{\partial^{2} u}{\partial y^{2}}=-6 x$. This shows that u is harmonic on \mathbb{C}, as

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0
$$

(b) (5 points) Write down the Cauchy-Riemann equations.

Solution: If u and v are two differentiable functions, the Cauchy-Riemann equations for u and v are

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} & =-\frac{\partial v}{\partial x}
\end{aligned}
$$

(c) (5 points) If u in part (a) is harmonic, find its harmonic conjugate on \mathbb{C}.

Solution: A harmonic conjugate for u is any function v such that u and v satisfy the Cauchy-Riemann equations. Thus, we must have that

$$
\frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=3 x^{2}-3 y^{2}-1
$$

Integrating with respect to y, we see that

$$
v=3 x^{2} y-y^{3}-y+C(x)
$$

To narrow down C, we use the other half of the Cauchy-Riemann equations, yielding

$$
\begin{aligned}
6 x y+\frac{\partial C}{\partial x} & =\frac{\partial v}{\partial x} \\
& =-\frac{\partial u}{\partial y} \\
& =6 x y+1
\end{aligned}
$$

This means that $C(x)=x+c$ for some $c \in \mathbb{C}$, and

$$
v=3 x^{2} y-y^{3}-y+x+c
$$

2. (a) (3 points) Write down the definition of Möbius transformations.

Solution: A function $T z=\frac{a z+b}{c z+d}$ for $z \in \mathbb{C}, a, b, c, d \in \mathbb{C}$ is a Möbius transformation if $a d-b c \neq 0$.
(b) (12 points) Let $T z=\frac{a z+b}{c z+d}$ be a Möbius transformation. Find necessary and sufficient conditions on a, b, c, d such that $T\left(\mathbb{R}_{\infty}\right)=\mathbb{R}_{\infty}$. Justify your answer.
Solution: See the solutions to Homework 4.
3. (a) (5 points) Let the path $\gamma(t)=e^{i t}, 0 \leq t \leq \frac{\pi}{2}$. Compute $\int_{\gamma} z e^{z} d z$.

Solution: $z e^{z}$ has a primitive on \mathbb{C} : we can find (by integration by parts, for example) that $(z-1) e^{z}$ is one. This allows us to use Theorem 1.18 to concludeafter calculating $\gamma\left(\frac{\pi}{2}\right)=i, \gamma(0)=1$-that

$$
\begin{aligned}
\int_{\gamma} z e^{z} d z & =(i-1) e^{i}-(1-1) e \\
& =(i-1) e^{i}
\end{aligned}
$$

(b) (10 points) Let the path $\gamma(t)=2+e^{i t},-\pi \leq t \leq \pi$. Compute $\int_{\gamma}\left(4-z^{2}\right)^{-1} d z$.

Solution: We start with the partial fraction decomposition

$$
\frac{1}{4-z^{2}}=\frac{1}{4}\left(\frac{1}{2-z}+\frac{1}{2+z}\right) .
$$

Since $\operatorname{Re} \gamma(t) \geq 1$ for each $t, \frac{1}{2+z}$ has a primitive, $\log (z+2)$, in a neighborhood of the closed curve that is the image of γ. As we have seen in section 1 of chapter 4, this means that

$$
\begin{aligned}
\int_{\gamma} \frac{1}{4-z^{2}} d z & =\frac{1}{4}\left(\int_{\gamma} \frac{1}{2-z} d z+\int_{\gamma} \frac{1}{2+z} d z\right) \\
& =\frac{1}{4} \int_{\gamma} \frac{1}{2-z} d z+0 \\
& =\frac{1}{4} \int_{\gamma} \frac{1}{2-z} d z
\end{aligned}
$$

Although $\frac{1}{2-z}$ does not have a primitive on γ, we can still calculate its integral to be

$$
\begin{aligned}
\int_{\gamma} \frac{1}{4-z^{2}} d z & =\frac{1}{4} \int_{-\pi}^{\pi} \frac{1}{-e^{i t}} i e^{i t} d t \\
& =-\frac{i}{4} \int_{-\pi}^{\pi} d t \\
& =-\frac{i}{4}(2 \pi) \\
& =-\frac{\pi i}{2}
\end{aligned}
$$

4. (5 points) Let G be a region in \mathbb{C} and $f: G \rightarrow \mathbb{C}$ an analytic function. Assume $|f(z)|=1$ for all $z \in G$. Prove that f must be constant (You cannot use any result that has not been covered yet. For instance, the open mapping theorem).

Solution: Let $f=u+i v$. By assumption,

$$
\begin{aligned}
u^{2}+v^{2} & =|f|^{2} \\
& =1,
\end{aligned}
$$

and we can differentiate both sides with respect to x and y to find that

$$
2\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial x}\right)=2\left(\frac{\partial u}{\partial y}+\frac{\partial v}{\partial y}\right)=0 .
$$

In other words, on G,

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=-\frac{\partial v}{\partial x} \\
& \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial y}
\end{aligned}
$$

However, we also know that u and v satisfy the Cauchy Riemann equations, since f is analytic on the region G. Combining the two yields

$$
\begin{aligned}
\frac{\partial v}{\partial y} & =\frac{\partial u}{\partial x} \\
& =-\frac{\partial v}{\partial x} \\
& =\frac{\partial u}{\partial y} \\
& =-\frac{\partial v}{\partial y}
\end{aligned}
$$

therefore, every step of this equation must be 0 . As a consequence,

$$
f^{\prime}=\frac{\partial v}{\partial y}+i \frac{\partial v}{\partial x}=0
$$

on the region G, so we know f must be constant.

The following question is optional and you get bonus points if you solve it.
5. (2 points) Let f be an analytic function on a region G. Assume $f^{\prime}=f$ on G. Find f.

Solution: We know at least one function, e^{z}, has this behavior. Therefore, we consider the (analytic on G) function $h(z):=f(z) e^{-z}$. By the product rule,

$$
\begin{aligned}
h^{\prime}(z) & =f^{\prime}(z) e^{-z}-f(z) e^{-z} \\
& =f(z) e^{-z}-f(z) e^{-z} \\
& =0
\end{aligned}
$$

As in the previous problem, this means that h is some constant $c \in \mathbb{C}$, so

$$
f(z)=c e^{z} .
$$

