3. Sequences and completeness

Definition: If \(\{x_1, x_2, \ldots\} \) is a sequence in a metric space \((X, d)\) then \(\{x_n\} \) converges to \(x \).

If for every \(\varepsilon > 0 \), there is an integer \(N \) such that \(d(x, x_n) < \varepsilon \) whenever \(n \geq N \).

Notation: \(x = \lim x_n \) or \(x_n \to x \)

Remark: \(x = \lim x_n \) if \(0 = \lim d(x, x_n) \)

If \(X = \mathbb{C} \) then \(z = \lim z_n \) means that for each \(\varepsilon > 0 \), there is an \(N \) such that \(|z - z_n| < \varepsilon \) when \(n \geq N \).

Proposition 3.2: A set \(F \subset X \) is closed if and only if for each sequence \(\{x_n\} \) in \(F \) with \(x = \lim x_n \) we have \(x \in F \).

Pf:

1. \(\Rightarrow \)

Suppose \(F \) is closed and \(x = \lim x_n \) where each \(x_n \) is in \(F \). So for every \(\varepsilon > 0 \), there is a pt \(x_0 \in B(x, \varepsilon) \); that is \(B(x, \varepsilon) \cap F = \emptyset \).

So that \(x \notin F^- = F \)

2. \(\Leftarrow \)

We will prove by contrapositive.

Now suppose \(F \) is not closed; so \(\exists \) a pt \(x_0 \in F^- \) which is not in \(F \). Since \(x_0 \in F^- \), for all \(\varepsilon > 0 \), we have \(B(x_0, \varepsilon) \cap F = \emptyset \). In particular, for every integer \(n \) there is a pt \(x_n \) in \(B(x_0, \varepsilon) \cap F \).

Thus \(d(x_0, x_n) < \frac{\varepsilon}{2} \) which implies that \(x_n \to x_0 \).

Definition: If \(A \subset X \) then a pt \(x \in X \) is a limit pt of \(A \) if there is a sequence \(\{x_n\} \) of distinct pts in \(A \) such that \(x = \lim x_n \).

Proposition 3.4: (a) A set is closed iff it contains all its limit pts
Proposition 3.4: (a) A set is closed iff it contains all its limit pts.
(b) If \(A \subseteq X \) then \(A = A \cup \{ \text{all limit pts of } A \} \).

Defn: A sequence \(\{x_n\} \subseteq X \) is called a Cauchy sequence if for every \(\varepsilon > 0 \) there is an integer \(N \) s.t. \(d(x_n, x_m) < \varepsilon \) for all \(n, m \geq N \).

Defn: A metric space is complete if every Cauchy sequence has a limit in \(X \).

Proposition: \(\mathbb{C} \) is complete.

If \(A \subseteq X \), we define the diameter of \(A \) by:
\[
\text{diam } A = \sup \{ d(x, y) : x, y \in A \}
\]

Thm 3.7 (Cantor's Theorem) A metric space \((X, d) \) is complete iff for any sequence \(\{F_n\} \) of non-empty closed sets with \(F_1 \supseteq F_2 \supseteq \ldots \) and \(\text{diam } F_n \to 0 \), \(\bigcap_{n=1}^{\infty} F_n \) consists of a single pt.

Proof: See Page 19 in the book.

Proposition 3.8: Let \((X, d) \) be a complete metric space and let \(Y \subseteq X \). Then \((Y, d) \) is a complete metric space iff \(Y \) is closed in \(X \).

Proof:

1. \(\Rightarrow \)
 Assume \(Y \) is closed. For any Cauchy sequence \(\{y_n\} \subseteq Y \subseteq X \), as \(X \) is complete, \(\exists x_0 \in X \) s.t. \(y_n \to x_0 \). Thus, \(x_0 \) is a limit pt of \(Y \). As \(Y \) is closed, we have \(x_0 \in Y \). We conclude \(Y \) is complete.

2. \(\Leftarrow \)
 Assume \(Y \) is complete. Let \(x_0 \) be a limit pt of \(Y \).
 Then there is a sequence \(\{y_n\} \) of pts in \(Y \) s.t. \(x_0 = \lim y_n \).
 Hence \(\{y_n\} \) is a Cauchy sequence (why?)
\[x_0 = \lim y_n \]

Hence \(\{ y_n \} \) is a Cauchy sequence (why?)
and must converge to a pt \(y_0 \in Y \), as \(Y \)
is complete. This implies \(y_0 = x_0 \) and so \(Y \) contains all its limit pts. Hence \(Y \) is closed.

4. Compactness.

Defn. (1) A subset \(K \) of a metric space \(X \) is compact if for every collection \(\mathcal{G} \) of open sets in \(X \) that covers \(K \), i.e.,
\[K \subseteq \bigcup \{ G : G \in \mathcal{G} \} \quad \text{(1)} \]
there is a finite number of sets \(G_1, \ldots, G_n \).
In \(\mathcal{G} \) such that \(K \subseteq G_1 \cup G_2 \cup \ldots \cup G_n \).

(2) A collection of sets \(\mathcal{G} \) satisfying (1) is called a cover of \(K \); if each member of \(\mathcal{G} \) is an open set it is called an open cover of \(K \);
if \(\mathcal{G} \) has finitely many elements it is called a finite cover of \(K \).

Example: (1) \(\mathbb{Z} \subset \mathbb{R} \) is not compact.

(2) \((0, 1) \subset \mathbb{R} \) is NOT compact. Indeed.
Let \(G_n = (0, 1 - \frac{1}{n}) ; \ n \geq 2 \) Then
\[\mathcal{G} = \{ G_n : n \geq 2 \} \]
is an open cover of \((0, 1) \). One can find a finite cover from \(\mathcal{G} \).

Proposition 4.3 Let \(K \) be a compact subset of \(X \);
then (a) \(K \) is closed
(b) If \(F \) is closed and \(F \cap K \)
then \(F \) is compact.

If \(\mathcal{J} \) is a collection of subsets of \(X \), we say that \(\mathcal{J} \) has finite intersection property (f.i.p.)
if whenever \(\{ F_1, \ldots, F_n \} \subset \mathcal{J} \) \(\bigcap F_1 \cap \ldots \cap F_n \neq \emptyset \).

Example: Let \(X = (0, 1) \), \(F_n = (0, \frac{1}{n}] ; \ n \geq 2 \). Then \(\mathcal{J} = \{ F_n : n \geq 2 \} \) has f.i.p. But
\[\cap F_n \in \mathcal{J} \neq \emptyset \]
Let \(F = \{ F_n : n \geq 2 \} \) be F.i.p. But \(\bigcap F \neq \emptyset \)

Proposition 4.4: A set \(K \subseteq X \) is compact if and only if every collection \(F \) of closed subsets of \(K \) with f.i.p. satisfies \(\bigcap F \neq \emptyset \).

Proof: See P21 in the book.

Corollary 4.5: Every compact metric space is complete.

Corollary 4.6: If \(X \) is compact, then every infinite set has a limit pt in \(X \).

Proof: Let \(S \) be an infinite subset of \(X \) and suppose \(S \) has no limit pts. Let \(\{ a_1, a_2, \ldots \} \) be a sequence of distinct pts in \(S \); then \(F_n = \{ a_1, a_2, \ldots \} \) also has no limit pts.

This implies \(F_n \) is closed.

Note: \(F = \{ F_n : n \geq 1 \} \) has f.i.p.

However, since \(a_1, a_2, \ldots \) are distinct,
\[
\bigcap_{n=1}^{\infty} F_n = \emptyset,
\]
contradicting proposition 4.5.

Definition: A metric space \((X,d)\) is sequentially compact if every sequence in \(X \) has a convergent subsequence.

Lebesgue's Covering Lemma

If \((X,d)\) is sequentially compact and \(G \) is an open cover of \(X \) then there is an \(\varepsilon > 0 \) st if \(x \) is in \(X \), there is an set \(G \subseteq G \) with \(B(x;\varepsilon) \subseteq G \).

Proof: We prove by contradiction. Suppose \(G \) is an open cover of \(X \) and no such \(\varepsilon > 0 \) can be found. In particular, for every \(n \in \mathbb{Z}^+ \) there is a pt \(x_n \in X \) such that \(B(x_n, \frac{1}{n}) \) is not contained in any set \(G \) in \(G \). Since \(X \) is sequentially compact, there is a pt \(x_0 \in X \) and a subsequence \(\{ x_{n_k} \} \) of \(\{ x_n \} \) s.t. \(x_0 = \lim x_{n_k} \). Let \(G_0 \subseteq G \) st \(x_0 \in G_0 \). There \(\exists \varepsilon > 0 \) st \(B(x_0, \varepsilon) \subseteq G_0 \). Now let
\[\{x_n \} \text{ s.t. } x_0 = \lim x_n \text{. Let } \epsilon > 0 \text{.} \]

Let \(x_0 \in G_0 \). There exists \(\epsilon > 0 \) s.t. \(B(x_0, \epsilon) \subset G_0 \). Now let \(N \) be such that \(d(x_0, x_n) < \frac{\epsilon}{2} \) for all \(n \geq N \).

Let \(N_0 = \max \{ N, \frac{1}{\epsilon} \} \). Let \(y \in B(x_0, \frac{1}{n_0}) \). Then

\[d(x_0, y) \leq d(x_0, x_{n_0}) + d(x_{n_0}, y) < \frac{\epsilon}{2} + \frac{1}{n_0} < \epsilon. \]

That is, \(B(x_0, \frac{1}{n_0}) \subset B(x_0, \epsilon) \subset G_0 \), contradicting the choice of \(x_{n_0} \).

Theorem 4.9. Let \((X, \delta)\) be a metric space. Then the following are equivalent (TFAE):

(a) \(X \) is compact;

(b) Every infinite set in \(X \) has a limit pt.

(c) \(X \) is sequentially compact

(d) \(X \) is complete and for every \(\epsilon > 0 \) there are a finite number of pts \(x_1, \ldots, x_k \) in \(X \) s.t.

\[x \in \bigcup_{k=1}^{k} B(x_k, \epsilon). \]

(The property in (d) is called total boundedness)

Pf: See Page 22 in the book.

Theorem 4.10 (Heine-Borel Theorem)

A subset \(K \) of \(\mathbb{R}^n (n \geq 1) \) is compact iff \(K \) is closed and bounded.

Pf: Page 23 in book.