6. The homotopic version of Cauchy's Theorem and simply connectivity

Deft $6.1:$ Let $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ be closed rectifible curves in region G, then γ_{0} is homotopic to γ_{1} in G if there is a continuous function $\Gamma:[0,1] \times[0,1] \rightarrow G$ s.t

$$
\left\{\begin{array}{l}
\Gamma(s, 0)=\gamma_{0}(s) \text { and } \Gamma(s, 1)=\gamma_{t}(s) \quad(0 \leq s \leq 1) \\
\Gamma(0, t)=\Gamma(1, t) \quad(0 \leq t \leq 1)
\end{array}\right.
$$

If γ_{0} is homotopic to γ_{1} in G write $\gamma_{0} \sim \gamma_{1}$.
Remark: " \sim " is an equivalence relation
E.g: Let $G=B(a ; R)$ and let $\gamma:[0,1] \rightarrow G$ be a closed rectifible curve. Fix $b \in G$. Set

$$
\Gamma(s, t)=t b+(1-t) \gamma(s), \quad 0 \leq s \leq 1, \quad 0 \leq t \leq 1 .
$$

Then $\Gamma(s, t) \in G$
Note $\Gamma(s, 0)=\gamma(s) ; \Gamma(s, 1)=b$.
Thus r is homotopic to a constant curve This process does NoT work if $G=B(a ; R) \mid\{a\}$.
Deft: A set G is convex if given any two points $a, b \in G$, the line segment joining a and $b,[a, b]$, lies entirely in G. The set G is star shaped if these is a point $a \in G$ sit for each $z \in G$, the line segment $[a, z]$

$a \in G S, T$ for each $t \in G$, the line reymerve (ic) lies entirely in G. In this Case, we say G is a-star shaped.
Remark:(1) If G is a-star shaped and z and w are pts in G then $[z, a, w]$ is polygon in G connecting z and w. Hence, each star shaped set is connected.
(2) convex \Rightarrow star-shaped but the converse is not true
proposition 6.4: Let G be an open set which is a-star shaped. Every closed rectifible curve in G is homotopic to a constant curve.

Deft 6.5: If γ is a closed rectifible curve in G then γ is homotopic to zero ($\gamma \sim 0$) if γ is homotopic to a constant curve.

The 6.6 (Cauchy's Thy; Second Version)
If $f: G \rightarrow \mathbb{C}$ is an analytic function and γ is a closed rectifiable curve in G such that $r \sim 0$, then

$$
\int_{\gamma} f=0
$$

$P f=$ we just explain the idea. It suffices to prove that $n(\gamma ; \omega)=0$ for all $\omega \in \mathbb{C}-G$ whenever $r \sim 0$
Let $\gamma_{1}=\gamma$ and let r_{0} be the constant curve sit $\gamma_{1} \sim \gamma_{0}$. Let Γ satisfy $(*)$ and define $h(t)=n\left(\gamma_{t} ; w\right)$, where $\gamma_{t}=T(s, t)$ and
$h(t)=n\left(\gamma_{t} ; \omega\right)$, where $\gamma_{t}=T(s, t)$ and w is fixed ir $\mathbb{C}-G$.
Step 1: show h is continuous on $[0,1]$
Then since h is integer valued and $h(0)=0$ it must be that $h(t) \equiv 0$. In particular,
$n(\gamma ; \omega)=0$ for all $\omega \in \mathbb{C}-G$.
Thy 6.7 (Cauchy's The, third Version)
If γ_{0} and γ_{1} are closed rectifible curves in G and $\gamma_{0} \sim \gamma_{1}$ then

$$
\int_{\gamma_{0}} f=\int_{\gamma_{1}} f
$$

for every function f analytic on G.
$D f=$ Read P90-92 in the book.
Corollary 6.10: If γ is a closed vectifible curve in G s.t $\gamma \sim 0$ then $n(r ; \omega)=0$ for all $w \in \mathbb{C}-G$.

Deft: An open set is simply connected if G is connected and every closed curve in G is homotopic to zero

Thm 6.15: If G is simply connected then $\int_{\delta} f=0$ for every closed vectifible curve and every analytic function fin G.

Neth 6.11 : If $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ are two vectifible curves

Neth $6.11:$ If $\gamma_{0}, \gamma_{1}:[0,1] \rightarrow G$ are two vectifible curves in G s.t $\gamma_{0}(0)=\gamma_{1}(0)=a$ and $\gamma_{0}(1)=\gamma_{1}(1)=b$ then we say γ_{0} and γ_{1} are fixed-end-point (FEPhomotopic) if there is a continuous map $\Gamma: I^{2} \rightarrow G$ s.t

$$
\begin{aligned}
& \Gamma(s, 0)=\gamma_{0}(s) \quad \Gamma(s, 1)=\gamma_{1}(s) \\
& \Gamma(0, t)=a \quad \Gamma(1, t)=b
\end{aligned}
$$

for $0 \leq s, t \leq 1$
The 6.13: (Independence of path The)
If γ_{0} and γ_{1} are two vectifible curves in G from a to b and γ_{0} and γ_{1} are FEP homotopie then

$$
\int_{\delta_{0}} f=\int_{\delta_{1}} f
$$

for any analytic function f in G.
$\mathrm{pf}=$ (Idea) let $\gamma=\gamma_{0}-\gamma_{1}$. Then prove $\gamma \sim 0$ in G
See P93 in the book for details.
Corollary 6.16: If G is simply connected and $f: G \rightarrow \mathbb{C}$ is analytic in G then f has a primitive in G.
$P f=$ Fix a pt $a \in G$ and let γ_{1}, γ_{2} be any two rectifible curves in G from a to a pt $z \in G$. Then we have

$$
\int_{\gamma_{1}} f=\int_{\gamma_{2}} f
$$

Hence we can get a well-defined function $F: G_{T} \rightarrow \mathbb{C}$

Hence we can get a well-aefinea function $r: c T \rightarrow \mathbb{C}$ by setting $\quad F(z)=\int_{\gamma} f$ where γ is any rectifible curve from a to z.

Claim: F is a primitive of f.
Pf of claim: $F_{i x} z_{0} \in G$. Let $r>0$ s.t $B\left(z_{0}, r\right) \subset G$, then let γ be a path from a to z_{0}. For z in $B\left(z_{0} ; r\right)$ let $\gamma_{z}=\gamma+\left[z_{0}, z\right]$. Then

$$
\frac{F(z)-F\left(z_{0}\right)}{z-z_{0}}=\frac{1}{z-z_{0}} \int_{\left[z_{0}, z\right]} f
$$

Now proceed as in the pf of Monera's Thm to show that $F^{\prime}\left(z_{0}\right)=f\left(z_{0}\right)$.
Corollary 6.17: Let G be simply connected and let $f: G \rightarrow \mathbb{C}$ be an analytic function s.t $f(z) \neq 0$ for any $z \in G$.
Then there is an analytic function $g: G \rightarrow \mathbb{C}$ s.t

$$
f(z)=e^{g(z)}
$$

$P f:$ Since $f \neq 0$ everywhere, $\frac{f^{\prime}}{f}$ is analytic on G.
Hence by corollary 6.16, it has a primitive g_{1}.
Let $h=e^{g_{1}}$. Then h is analytic and never vanishes.
So $\frac{f}{h}$ is analytic and

$$
\left(\frac{f}{h}\right)^{\prime}=\frac{h f^{\prime}-h^{\prime} f}{h^{2}}
$$

Note $h^{\prime}=g_{1}^{\prime} h \Rightarrow \frac{h^{\prime}}{h}=g_{1}^{\prime}=\frac{f^{\prime}}{f} \Rightarrow\left(\frac{f}{h}\right)^{\prime}=0$

Note $h^{\prime}=y_{1} h \Rightarrow \frac{n}{h}=y_{1}=\frac{\pi}{f}-(n)-$
Thus $\frac{f}{h} \equiv c$ is a constant. \Rightarrow

$$
f=c h=c e^{g_{1}}=e^{g_{1}+c^{\prime}}
$$

(Here as $f \neq 0 \Rightarrow c \neq 0$)
Then we just need to set $g=g_{1}+c^{\prime}$.

