2. (b) Calculate the cube roots of \(i \).

Solution: In polar coordinates, finding a cube root of \(i \) amounts to solving the equation

\[r^3 e^{i3\theta} = e^{i\pi} \]

which forces

\[r = 1, 3\theta = \frac{\pi}{2} + 2\pi k \]

with \(k \in \mathbb{Z} \). The possible values of \(\theta \) then must be \(\frac{\pi}{6} + \frac{2\pi k}{3} \), so \(\theta \) is one of \(\frac{\pi}{6}, \frac{5\pi}{6}, \) or \(\frac{3\pi}{2} \).

7. If \(z \in \mathbb{C} \) and \(\text{Re}(z^n) \geq 0 \) for every positive integer \(n \), show that \(z \) is a non-negative real number.

Solution: Again we put \(z \) into polar coordinates, \(z = re^{i\theta} \). Our assumption tells us that (up to an integer multiple of \(2\pi \), at least)

\[-\frac{\pi}{2} \leq n \cdot \theta \leq \frac{\pi}{2} \]

for every positive integer \(n \). This means \(\theta \) itself satisfies \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2} \). If \(|\theta| > 0 \), then we can take the largest \(n \) such that \(|n\theta| \leq \frac{\pi}{2} \). However,

\[
\begin{align*}
|\theta| &\leq |n\theta| + |\theta| \\
&\leq \frac{\pi}{2} + \frac{\pi}{2} \\
&= \pi
\end{align*}
\]

meaning \(\frac{\pi}{2} < |(n+1)\theta| \leq \pi \), which we’ve established to be impossible. Thus \(z \) is real, so \(z = \text{Re}(z) \geq 0 \).
Chapter 2.3

3. **Show that** \(\text{diam } A = \text{diam } A^-. \)

Solution: The left hand side is certainly \(\leq \) the right, since \(A^- \) contains \(A \) (so we are taking the sup over more points than we are for \(A \)'s diameter). For the other direction, by the definition of supremum as a least upper bound it’s enough to check that for each \(s \) and \(t \) in \(A \), \(d(s, t) \leq \text{diam } A \). We’ve seen any element in the closure is either in \(A \) or a limit point, so we can find a sequence \(s_i \in A \) with \(\lim_{n \to \infty} d(s, s_n) = 0 \). Likewise, we can take a sequence \(t_j \in A \) converging to \(t \). By the triangle inequality,

\[
d(s, t) - d(s, s_n) - d(t, t_n) \leq d(s, t) \leq d(s, t) + d(s, s_n) + d(t, t_n)
\]

so taking limits we see that \(\lim_{n \to \infty} d(s_n, t_n) = d(s, t) \). This shows that \(d(s, t) = \limsup_{n \to \infty} d(s_n, t_n) \) is certainly \(\leq \sup_{i,j} d(s_i, t_j) \), which in turn is \(\leq \sup_{x,y \in A} d(x, y) = \text{diam } A \) since all of the \(s_i \) and \(t_j \) are in \(A \), and we are done.

1. If \(s \) is actually in \(A \), then just take all the \(s_i \)'s to be \(s \)