Math 220A HW 1 Solutions to Selected Problems

Chapter 1.4

2. (b) Calculate the cube roots of i.

Solution: In polar coordinates, finding a cube root of *i* amounts to solving the equation

$$r^3 e^{i3\theta} = e^{\frac{i\pi}{2}}$$

which forces

$$r = 1, 3\theta = \frac{\pi}{2} + 2\pi k$$

with $k \in \mathbb{Z}$. The possible values of θ then must be $\frac{\pi}{6} + \frac{2\pi k}{3}$, so θ is one of $\frac{\pi}{6}, \frac{5\pi}{6}$, or $\frac{3\pi}{2}$.

7. If $z \in \mathbb{C}$ and $\operatorname{Re}(z^n) \ge 0$ for every positive integer n, show that z is a non-negative real number.

Solution: Again we put z into polar coordinates, $z = re^{i\theta}$. Our assumption tells us that (up to an integer multiple of 2π , at least)

$$-\frac{\pi}{2} \le n \cdot \theta \le \frac{\pi}{2}$$

for every positive integer n. This means θ itself satisfies $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. If $|\theta| > 0$, then we can take the largest n such that $|n\theta| \leq \frac{\pi}{2}$. However,

$$|(n+1)\theta| \le |n\theta| + |\theta|$$
$$\le \frac{\pi}{2} + \frac{\pi}{2}$$
$$\le \pi$$

meaning $\frac{\pi}{2} < |(n+1)\theta| \le \pi$, which we've established to be impossible. Thus z is real, so $z = \operatorname{Re}(z) \ge 0$.

Chapter 2.3

3. Show that diam $A = \operatorname{diam} A^{-}$.

Solution: The left hand side is certainly \leq the right, since A^- contains A (so we are taking the sup over more points than we are for A's diameter). For the other direction, by the definition of supremum as a least upper bound it's enough to check that for each s and t in A, $d(s,t) \leq \text{diam } A$. We've seen any element in the closure is either in A or a limit point, so we can find a sequence $s_i \in A$ with $\lim_{n \to \infty} d(s, s_n) = 0^{-1}$. Likewise, we can take a sequence $t_j \in A$ converging to t. By the triangle inequality,

$$d(s,t) - d(s,s_n) - d(t,t_n) \le d(s_n,t_n) \le d(s,t) + d(s,s_n) + d(t,t_n)$$

so taking limits we see that $\lim_{n \to \infty} d(s_n, t_n) = d(s, t)$. This shows that $d(s, t) = \limsup_{n \to \infty} d(s_n, t_n)$ is certainly $\leq \sup_{i,j} d(s_i, t_j)$, which in turn is $\leq \sup_{x,y \in A} d(x, y) = \operatorname{diam} A$ since all of the s_i and t_j are in A, and we are done.

¹ if s is actually in A, then just take all the s_i 's to be s