Math 220A HW 1 Solutions to Selected Problems

Chapter 1.4
2. (b) Calculate the cube roots of i.

Solution: In polar coordinates, finding a cube root of i amounts to solving the equation

$$
r^{3} e^{i 3 \theta}=e^{\frac{i \pi}{2}}
$$

which forces

$$
r=1,3 \theta=\frac{\pi}{2}+2 \pi k
$$

with $k \in \mathbb{Z}$. The possible values of θ then must be $\frac{\pi}{6}+\frac{2 \pi k}{3}$, so θ is one of $\frac{\pi}{6}, \frac{5 \pi}{6}$, or $\frac{3 \pi}{2}$.
7. If $z \in \mathbb{C}$ and $\operatorname{Re}\left(z^{n}\right) \geq 0$ for every positive integer n, show that z is a nonnegative real number.

Solution: Again we put z into polar coordinates, $z=r e^{i \theta}$. Our assumption tells us that (up to an integer multiple of 2π, at least)

$$
-\frac{\pi}{2} \leq n \cdot \theta \leq \frac{\pi}{2}
$$

for every positive integer n. This means θ itself satisfies $-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}$. If $|\theta|>0$, then we can take the largest n such that $|n \theta| \leq \frac{\pi}{2}$. However,

$$
\begin{aligned}
|(n+1) \theta| & \leq|n \theta|+|\theta| \\
& \leq \frac{\pi}{2}+\frac{\pi}{2} \\
& \leq \pi
\end{aligned}
$$

meaning $\frac{\pi}{2}<|(n+1) \theta| \leq \pi$, which we've established to be impossible. Thus z is real, so $z=\operatorname{Re}(z) \geq 0$.

Chapter 2.3

3. Show that $\operatorname{diam} A=\operatorname{diam} A^{-}$.

Solution: The left hand side is certainly \leq the right, since A^{-}contains A (so we are taking the sup over more points than we are for A 's diameter). For the other direction, by the definition of supremum as a least upper bound it's enough to check that for each s and t in $A, d(s, t) \leq \operatorname{diam} A$. We've seen any element in the closure is either in A or a limit point, so we can find a sequence $s_{i} \in A$ with $\lim _{n \rightarrow \infty} d\left(s, s_{n}\right)=0^{1}$. Likewise, we can take a sequence $t_{j} \in A$ converging to t. By the triangle inequality,

$$
d(s, t)-d\left(s, s_{n}\right)-d\left(t, t_{n}\right) \leq d\left(s_{n}, t_{n}\right) \leq d(s, t)+d\left(s, s_{n}\right)+d\left(t, t_{n}\right)
$$

so taking limits we see that $\lim _{n \rightarrow \infty} d\left(s_{n}, t_{n}\right)=d(s, t)$. This shows that $d(s, t)=\limsup _{n \rightarrow \infty} d\left(s_{n}, t_{n}\right)$ is certainly $\leq \sup _{i, j} d\left(s_{i}, t_{j}\right)$, which in turn is $\leq \sup _{x, y \in A} d(x, y)=\operatorname{diam} A$ since all of the s_{i} and t_{j} are in A, and we are done.

[^0]
[^0]: ${ }^{1}$ if s is actually in A, then just take all the s_{i} 's to be s

