Math 220A HW 2 Solutions

Chapter 3.1

6. Find the radius of convergence of each of the following power series:

(a) $\sum_{n=0}^{\infty} a^n z^n, a \in \mathbb{C};$

Solution: To find the radius of convergence R of a power series $\sum_{n=0}^{\infty} a_n z^n$, we generally need to check $\frac{1}{R} = \limsup_{n \to \infty} |a_n|^{\frac{1}{n}}$. Of course, here $|a_n|^{\frac{1}{n}}$ is just the constant sequence |a|, so $R = \frac{1}{|a|}$ (ie, ∞ if a = 0). We could also have found this by noting that this series is just a change of variables $z \mapsto az$ of a geometric series, so it converges when |az| < 1.

(b)
$$\sum_{n=0}^{\infty} a^{n^2} z^n, a \in \mathbb{C};$$

Solution: In this case, $|a_n|^{\frac{1}{n}} = |a|^n$. Therefore, the radius of convergence depends on a, as follows:

- 1. if |a| < 1, then $\limsup_{n \to \infty} |a|^n = 0$, so $R = \infty$.
- 2. if |a| = 1, then we are just taking the limsup of $|a|^n = 1$, so R = 1.
- 3. if |a| > 1, then $\limsup_{n \to \infty} |a|^n = \infty$, and R = 0.
- (c) $\sum_{n=0}^{\infty} k^n z^n$, k an integer $\neq 0$;

Solution: Is this a typo? See part (a).

(d)
$$\sum_{n=0}^{\infty} z^{n!}$$

Solution: Here for n > 1, $|a_n|^{\frac{1}{n}} = 1$ if n = k! for some non-negative integer k, and 0 otherwise. This means that

$$\begin{split} \limsup_{n \to \infty} |a_n|^{\frac{1}{n}} &= \lim_{n \to \infty} \sup_{m \ge n} |a_m|^{\frac{1}{m}} \\ &= \lim_{n \to \infty} \sup\{0, 1\}, \end{split}$$

and so the radius of convergence is also 1.

Chapter 3.2

1. Show that $f(z) = |z|^2 = x^2 + y^2$ has derivative only at the origin.

Solution: Suppose that f is differentiable at some $a \in \mathbb{C}$ —ie, that the limit

$$L = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$

exists. Consider the line ℓ between the origin and a, and take its perpendicular ℓ^{\perp} through a. Let a_t be the point on ℓ at distance t further from the origin than a, and a_t^{\perp} be either point on ℓ^{\perp} at distance t from a. On the one hand, $|a_t| = |a| + t$ and $h_t := a_t - a = te^{i\theta}$, where $\theta = \arg a$, so

$$\lim_{h_t \to 0} \frac{f(a_t) - f(a)}{h_t} = \lim_{t \to 0} \frac{(|a|^2 + 2|a|t + t^2 - |a|^2)}{te^{i\theta}}$$
$$= \lim_{t \to 0} \frac{2|a| + t}{e^{i\theta}}$$
$$= \frac{2|a|}{e^{i\theta}}$$

On the other, by the Pythagorean theorem $|a_t^{\perp}|^2 = |a|^2 + t^2$, while $h_t^{\perp} := a_t^{\perp} - a = te^{i(\theta \pm \frac{\pi}{2})}$, meaning

$$\lim_{h_t^{\perp} \to 0} \frac{f(a_t^{\perp}) - f(a)}{ht^{\perp}} = \lim_{t \to 0} \frac{(|a|^2 + t^2 - |a|^2)}{te^{i(\theta \pm \frac{\pi}{2})}}$$
$$= \lim_{t \to 0} \frac{t}{e^{i(\theta \pm \frac{\pi}{2})}}$$
$$= 0$$

But in both cases were are taking a limit of the difference quotient as z approaches a, so they must both be equal to L. This is a contradiction unless a = 0, so it remains merely to check that f actually has a derivative at 0. This is easy, since in that case

$$\lim_{h \to 0} \frac{f(h) - f(0)}{h} = \lim_{h \to 0} \frac{|h|^2}{h}$$
$$= \lim_{h \to 0} \bar{h}$$
$$= 0$$

4. Show that $(\cos z)' = -\sin z$ and $(\sin z)' = \cos z$.

Solution: We can use the formulae

$$\cos z = \frac{e^{iz} + e^{-iz}}{2}, \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

Differentiating these, using that $(e^{az})' = ae^{az}$ for any constant a, we have

$$(\cos z)' = \frac{ie^{iz} - ie^{-iz}}{2}$$
$$= -\frac{e^{iz} - e^{-iz}}{2i}$$
$$= -\sin z$$

while

$$(\sin z)' = \frac{ie^{iz} + ie^{-iz}}{2i}$$
$$= \frac{e^{iz} + e^{-iz}}{2}$$
$$= \cos z$$