Math 220A HW 2 Solutions

Chapter 3.1

6. Find the radius of convergence of each of the following power series:

(a) $\sum_{n=0}^{\infty} a^{n} z^{n}, a \in \mathbb{C}$;

Solution: To find the radius of convergence R of a power series $\sum_{n=0}^{\infty} a_{n} z^{n}$, we generally need to check $\frac{1}{R}=\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}}$. Of course, here $\left|a_{n}\right|^{\frac{1}{n}}$ is just the constant sequence $|a|$, so $R=\frac{1}{|a|}($ ie, ∞ if $a=0)$. We could also have found this by noting that this series is just a change of variables $z \mapsto a z$ of a geometric series, so it converges when $|a z|<1$.
(b) $\sum_{n=0}^{\infty} a^{n^{2}} z^{n}, a \in \mathbb{C}$;

Solution: In this case, $\left|a_{n}\right|^{\frac{1}{n}}=|a|^{n}$. Therefore, the radius of convergence depends on a, as follows:

1. if $|a|<1$, then $\limsup |a|^{n}=0$, so $R=\infty$.
2. if $|a|=1$, then we are just taking the limsup of $|a|^{n}=1$, so $R=1$.
3. if $|a|>1$, then $\limsup _{n \rightarrow \infty}|a|^{n}=\infty$, and $R=0$.
(c) $\sum_{n=0}^{\infty} k^{n} z^{n}, k$ an integer $\neq 0$;

Solution: Is this a typo? See part (a).
(d) $\sum_{n=0}^{\infty} z^{n!}$.

Solution: Here for $n>1,\left|a_{n}\right|^{\frac{1}{n}}=1$ if $n=k$! for some non-negative integer k, and 0 otherwise. This means that

$$
\begin{aligned}
\limsup _{n \rightarrow \infty}\left|a_{n}\right|^{\frac{1}{n}} & =\lim _{n \rightarrow \infty} \sup _{m \geq n}\left|a_{m}\right|^{\frac{1}{m}} \\
& =\lim _{n \rightarrow \infty} \sup \{0,1\},
\end{aligned}
$$

and so the radius of convergence is also 1 .

Chapter 3.2

1. Show that $f(z)=|z|^{2}=x^{2}+y^{2}$ has derivative only at the origin.

Solution: Suppose that f is differentiable at some $a \in \mathbb{C}-\mathrm{ie}$, that the limit

$$
L=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

exists. Consider the line ℓ between the origin and a, and take its perpendicular ℓ^{\perp} through a. Let a_{t} be the point on ℓ at distance t further from the origin than a, and a_{t}^{\perp} be either point on ℓ^{\perp} at distance t from a. On the one hand, $\left|a_{t}\right|=|a|+t$ and $h_{t}:=a_{t}-a=t e^{i \theta}$, where $\theta=\arg a$, so

$$
\begin{aligned}
\lim _{h_{t} \rightarrow 0} \frac{f\left(a_{t}\right)-f(a)}{h_{t}} & =\lim _{t \rightarrow 0} \frac{\left(|a|^{2}+2|a| t+t^{2}-|a|^{2}\right)}{t e^{i \theta}} \\
& =\lim _{t \rightarrow 0} \frac{2|a|+t}{e^{i \theta}} \\
& =\frac{2|a|}{e^{i \theta}}
\end{aligned}
$$

On the other, by the Pythagorean theorem $\left|a_{t}^{\perp}\right|^{2}=|a|^{2}+t^{2}$, while $h_{t}^{\perp}:=a_{t}^{\perp}-a=t e^{i\left(\theta \pm \frac{\pi}{2}\right)}$, meaning

$$
\begin{aligned}
\lim _{h_{t}^{\perp} \rightarrow 0} \frac{f\left(a_{t}^{\perp}\right)-f(a)}{h t^{\perp}} & =\lim _{t \rightarrow 0} \frac{\left(|a|^{2}+t^{2}-|a|^{2}\right)}{t e^{i\left(\theta \pm \frac{\pi}{2}\right)}} \\
& =\lim _{t \rightarrow 0} \frac{t}{e^{i\left(\theta \pm \frac{\pi}{2}\right)}} \\
& =0
\end{aligned}
$$

But in both cases were are taking a limit of the difference quotient as z approaches a, so they must both be equal to L. This is a contradiction unless $a=0$, so it remains merely to check that f actually has a derivative at 0 . This is easy, since in that case

$$
\begin{aligned}
\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h} & =\lim _{h \rightarrow 0} \frac{|h|^{2}}{h} \\
& =\lim _{h \rightarrow 0} \bar{h} \\
& =0
\end{aligned}
$$

4. Show that $(\cos z)^{\prime}=-\sin z$ and $(\sin z)^{\prime}=\cos z$.

Solution: We can use the formulae

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

Differentiating these, using that $\left(e^{a z}\right)^{\prime}=a e^{a z}$ for any constant a, we have

$$
\begin{aligned}
(\cos z)^{\prime} & =\frac{i e^{i z}-i e^{-i z}}{2} \\
& =-\frac{e^{i z}-e^{-i z}}{2 i} \\
& =-\sin z
\end{aligned}
$$

while

$$
\begin{aligned}
(\sin z)^{\prime} & =\frac{i e^{i z}+i e^{-i z}}{2 i} \\
& =\frac{e^{i z}+e^{-i z}}{2} \\
& =\cos z
\end{aligned}
$$

