Math 220A HW 3 Solutions

6. Describe the following sets: $\left\{z: e^{z}=i\right\},\left\{z: e^{z}=-1\right\},\left\{z: e^{z}=-i\right\}$, $\{z: \cos z=0\},\{z: \sin z=0\}$.

Solution: The general solution for $e^{z}=w$ is $z=\log |w|+i(\arg (w)+2 \pi k), k \in \mathbb{Z}$. Plugging in $w=-1, \pm i$, we find that

$$
\begin{gathered}
\left\{z: e^{z}=i\right\}=\left\{i\left(\frac{1}{2}+2 k\right) \pi, k \in \mathbb{Z}\right\} \\
\left\{z: e^{z}=-1\right\}=\{i((2 k+1) \pi, k \in \mathbb{Z}\}
\end{gathered}
$$

and

$$
\left\{z: e^{z}=i\right\}=\left\{i\left(2 k-\frac{1}{2}\right) \pi, k \in \mathbb{Z}\right\}
$$

For the rest, we can write $\cos z$ and $\sin z$ in terms of $e^{ \pm i z}$ to see (using that e^{z} is nonzero) that

$$
\begin{aligned}
\{z: \cos z=0\} & =\left\{z: e^{i z}=-e^{-i z}\right\} \\
& =\left\{z: e^{2 i z}=-1\right\}
\end{aligned}
$$

while

$$
\begin{aligned}
\{z: \sin z=0\} & =\left\{z: e^{i z}=e^{-i z}\right\} \\
& =\left\{z: e^{2 i z}=1\right\}
\end{aligned}
$$

Applying our earlier results, we have

$$
\{z: \quad \cos z=0\}=\left\{\frac{k}{2} \pi, k \text { odd }\right\},\{z: \sin z=0\}=\{k \pi, k \in \mathbb{Z}\}
$$

7. Prove formulas for $\cos (z+w)$ and $\sin (z+w)$.

Solution: As in the last homework, it's helpful to use

$$
\cos z=\frac{e^{i z}+e^{-i z}}{2}, \sin z=\frac{e^{i z}-e^{-i z}}{2 i}
$$

With these, we can recover the usual sum formulas:

$$
\begin{aligned}
\cos (z+w) & =\frac{e^{i(z+w)}+e^{-i(z+w)}}{2} \\
& =\frac{2 e^{i z} e^{i w}+2 e^{-i z} e^{-i w}}{4} \\
& =\frac{2 e^{i z} e^{i w}+2 e^{-i z} e^{-i w}+e^{-i z} e^{i w}-e^{-i z} e^{i w}+e^{i z} e^{-i w}-e^{i z} e^{-i w}}{4} \\
& =\frac{e^{i z} e^{i w}+e^{-i z} e^{i w}+e^{i z} e^{-i w}+e^{-i z} e^{-i w}+e^{i z} e^{i w}-e^{-i z} e^{i w}-e^{i z} e^{-i w}+e^{-i z} e^{-i w}}{4} \\
& =\frac{\left(e^{i z}+e^{-i z}\right)\left(e^{i w}+e^{-i w}\right)}{4}-\frac{\left(e^{i z}-e^{-i z}\right)\left(e^{i w}-e^{-i w}\right)}{(2 i)^{2}} \\
& =\cos z \cos w-\sin z \sin w
\end{aligned}
$$

and

$$
\begin{aligned}
\sin (z+w) & =\frac{e^{i(z+w)}-e^{-i(z+w)}}{2 i} \\
& =\frac{2 e^{i z} e^{i w}-2 e^{-i z} e^{-i w}}{4 i} \\
& =\frac{2 e^{i z} e^{i w}-2 e^{-i z} e^{-i w}+e^{-i z} e^{i w}-e^{-i z} e^{i w}+e^{i z} e^{-i w}-e^{i z} e^{-i w}}{4 i} \\
& =\frac{e^{i z} e^{i w}-e^{-i z} e^{i w}+e^{i z} e^{-i w}-e^{-i z} e^{-i w}+e^{i z} e^{i w}+e^{-i z} e^{i w}-e^{i z} e^{-i w}-e^{-i z} e^{-i w}}{4 i} \\
& =\frac{\left(e^{i z}-e^{-i z}\right)\left(e^{i w}+e^{-i w}\right)}{4 i}+\frac{\left(e^{i z}+e^{-i z}\right)\left(e^{i w}-e^{-i w}\right)}{4 i} \\
& =\sin z \cos w+\cos z \sin w
\end{aligned}
$$

8. Define $\tan z=\frac{\sin z}{\cos z}$. Where is this function defined and analytic?

Solution: By the quotient rule, $\tan z$ is analytic on any open set where it is definedie, away from $\cos z=0$. Explicitly, we know from the first problem that the domain of definition is (the open set)

$$
\mathbb{C} \backslash\left\{\frac{k}{2} \pi, k \text { odd }\right\}
$$

12. Show that the real part of the function $z^{\frac{1}{2}}$ is always positive.

Solution: The sole point here is that we have to choose a branch of the square root function: $z^{\frac{1}{2}}$ is defined as $e^{\frac{1}{2} \log z}$, where $\log z$ is the principal branch of the logarithm, so we exclude non-negative real z. Setting $z=r^{i \theta}$ with $-\pi<\theta<\pi$,

$$
\begin{aligned}
z^{\frac{1}{2}} & =e^{\frac{1}{2}(\log r+i \theta)} \\
& =r^{\frac{1}{2}} e^{\frac{\theta}{2}}
\end{aligned}
$$

Thus $\operatorname{Re} z^{\frac{1}{2}}=r^{\frac{1}{2}} \cos \frac{\theta}{2}$, which is positive as $\frac{\theta}{2} \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
12. Suppose $f: G \rightarrow \mathbb{C}$ is analytic and that G is connected. Show that if $f(z)$ is real for all z in G then f is constant.

Solution: Since f is analytic on G^{1}, we can write $f=u+i v$ with u, v differentiable and satisfying the Cauchy Riemann equations. But $v=0$ if f is real, so this amounts to

$$
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial y}=0
$$

The derivation of the Cauchy Riemann equations also shows that $f^{\prime}(z)=\frac{\partial u}{\partial x}(z)-i \frac{\partial u}{\partial y}(z)$, so $f^{\prime}(z)=0$ in G. As G is open and connected, we know that $f^{\prime}(z)=0$ implies f is constant on G.

[^0]
[^0]: ${ }^{1}$ We should probably assume G is open - or at least contains an open set-here, otherwise we could take something like $G=$ a real line segment and $f=$ the identity, which is analytic on any open set containing G. Since there's some ambiguity, we might as well assume G is open.

